|
- *> \brief \b DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DORML2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorml2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorml2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorml2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
- * WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS
- * INTEGER INFO, K, LDA, LDC, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DORML2 overwrites the general real m by n matrix C with
- *>
- *> Q * C if SIDE = 'L' and TRANS = 'N', or
- *>
- *> Q**T* C if SIDE = 'L' and TRANS = 'T', or
- *>
- *> C * Q if SIDE = 'R' and TRANS = 'N', or
- *>
- *> C * Q**T if SIDE = 'R' and TRANS = 'T',
- *>
- *> where Q is a real orthogonal matrix defined as the product of k
- *> elementary reflectors
- *>
- *> Q = H(k) . . . H(2) H(1)
- *>
- *> as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
- *> if SIDE = 'R'.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**T from the Left
- *> = 'R': apply Q or Q**T from the Right
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': apply Q (No transpose)
- *> = 'T': apply Q**T (Transpose)
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines
- *> the matrix Q.
- *> If SIDE = 'L', M >= K >= 0;
- *> if SIDE = 'R', N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension
- *> (LDA,M) if SIDE = 'L',
- *> (LDA,N) if SIDE = 'R'
- *> The i-th row must contain the vector which defines the
- *> elementary reflector H(i), for i = 1,2,...,k, as returned by
- *> DGELQF in the first k rows of its array argument A.
- *> A is modified by the routine but restored on exit.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,K).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by DGELQF.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC,N)
- *> On entry, the m by n matrix C.
- *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension
- *> (N) if SIDE = 'L',
- *> (M) if SIDE = 'R'
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
- $ WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, K, LDA, LDC, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LEFT, NOTRAN
- INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ
- DOUBLE PRECISION AII
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- *
- * NQ is the order of Q
- *
- IF( LEFT ) THEN
- NQ = M
- ELSE
- NQ = N
- END IF
- IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
- INFO = -7
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORML2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
- $ RETURN
- *
- IF( ( LEFT .AND. NOTRAN ) .OR. ( .NOT.LEFT .AND. .NOT.NOTRAN ) )
- $ THEN
- I1 = 1
- I2 = K
- I3 = 1
- ELSE
- I1 = K
- I2 = 1
- I3 = -1
- END IF
- *
- IF( LEFT ) THEN
- NI = N
- JC = 1
- ELSE
- MI = M
- IC = 1
- END IF
- *
- DO 10 I = I1, I2, I3
- IF( LEFT ) THEN
- *
- * H(i) is applied to C(i:m,1:n)
- *
- MI = M - I + 1
- IC = I
- ELSE
- *
- * H(i) is applied to C(1:m,i:n)
- *
- NI = N - I + 1
- JC = I
- END IF
- *
- * Apply H(i)
- *
- AII = A( I, I )
- A( I, I ) = ONE
- CALL DLARF( SIDE, MI, NI, A( I, I ), LDA, TAU( I ),
- $ C( IC, JC ), LDC, WORK )
- A( I, I ) = AII
- 10 CONTINUE
- RETURN
- *
- * End of DORML2
- *
- END
|