|
- *> \brief \b DORGR2 generates all or part of the orthogonal matrix Q from an RQ factorization determined by sgerqf (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DORGR2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgr2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgr2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgr2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, K, LDA, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DORGR2 generates an m by n real matrix Q with orthonormal rows,
- *> which is defined as the last m rows of a product of k elementary
- *> reflectors of order n
- *>
- *> Q = H(1) H(2) . . . H(k)
- *>
- *> as returned by DGERQF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix Q. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix Q. N >= M.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines the
- *> matrix Q. M >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the (m-k+i)-th row must contain the vector which
- *> defines the elementary reflector H(i), for i = 1,2,...,k, as
- *> returned by DGERQF in the last k rows of its array argument
- *> A.
- *> On exit, the m by n matrix Q.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The first dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by DGERQF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument has an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, K, LDA, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, II, J, L
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARF, DSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.M ) THEN
- INFO = -2
- ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORGR2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.LE.0 )
- $ RETURN
- *
- IF( K.LT.M ) THEN
- *
- * Initialise rows 1:m-k to rows of the unit matrix
- *
- DO 20 J = 1, N
- DO 10 L = 1, M - K
- A( L, J ) = ZERO
- 10 CONTINUE
- IF( J.GT.N-M .AND. J.LE.N-K )
- $ A( M-N+J, J ) = ONE
- 20 CONTINUE
- END IF
- *
- DO 40 I = 1, K
- II = M - K + I
- *
- * Apply H(i) to A(1:m-k+i,1:n-k+i) from the right
- *
- A( II, N-M+II ) = ONE
- CALL DLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, TAU( I ),
- $ A, LDA, WORK )
- CALL DSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
- A( II, N-M+II ) = ONE - TAU( I )
- *
- * Set A(m-k+i,n-k+i+1:n) to zero
- *
- DO 30 L = N - M + II + 1, N
- A( II, L ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- RETURN
- *
- * End of DORGR2
- *
- END
|