|
- *> \brief \b DLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAQTR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqtr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqtr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqtr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * LOGICAL LREAL, LTRAN
- * INTEGER INFO, LDT, N
- * DOUBLE PRECISION SCALE, W
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION B( * ), T( LDT, * ), WORK( * ), X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAQTR solves the real quasi-triangular system
- *>
- *> op(T)*p = scale*c, if LREAL = .TRUE.
- *>
- *> or the complex quasi-triangular systems
- *>
- *> op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE.
- *>
- *> in real arithmetic, where T is upper quasi-triangular.
- *> If LREAL = .FALSE., then the first diagonal block of T must be
- *> 1 by 1, B is the specially structured matrix
- *>
- *> B = [ b(1) b(2) ... b(n) ]
- *> [ w ]
- *> [ w ]
- *> [ . ]
- *> [ w ]
- *>
- *> op(A) = A or A**T, A**T denotes the transpose of
- *> matrix A.
- *>
- *> On input, X = [ c ]. On output, X = [ p ].
- *> [ d ] [ q ]
- *>
- *> This subroutine is designed for the condition number estimation
- *> in routine DTRSNA.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] LTRAN
- *> \verbatim
- *> LTRAN is LOGICAL
- *> On entry, LTRAN specifies the option of conjugate transpose:
- *> = .FALSE., op(T+i*B) = T+i*B,
- *> = .TRUE., op(T+i*B) = (T+i*B)**T.
- *> \endverbatim
- *>
- *> \param[in] LREAL
- *> \verbatim
- *> LREAL is LOGICAL
- *> On entry, LREAL specifies the input matrix structure:
- *> = .FALSE., the input is complex
- *> = .TRUE., the input is real
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of T+i*B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension (LDT,N)
- *> On entry, T contains a matrix in Schur canonical form.
- *> If LREAL = .FALSE., then the first diagonal block of T mu
- *> be 1 by 1.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the matrix T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (N)
- *> On entry, B contains the elements to form the matrix
- *> B as described above.
- *> If LREAL = .TRUE., B is not referenced.
- *> \endverbatim
- *>
- *> \param[in] W
- *> \verbatim
- *> W is DOUBLE PRECISION
- *> On entry, W is the diagonal element of the matrix B.
- *> If LREAL = .TRUE., W is not referenced.
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is DOUBLE PRECISION
- *> On exit, SCALE is the scale factor.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (2*N)
- *> On entry, X contains the right hand side of the system.
- *> On exit, X is overwritten by the solution.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> On exit, INFO is set to
- *> 0: successful exit.
- *> 1: the some diagonal 1 by 1 block has been perturbed by
- *> a small number SMIN to keep nonsingularity.
- *> 2: the some diagonal 2 by 2 block has been perturbed by
- *> a small number in DLALN2 to keep nonsingularity.
- *> NOTE: In the interests of speed, this routine does not
- *> check the inputs for errors.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE DLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK,
- $ INFO )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- LOGICAL LREAL, LTRAN
- INTEGER INFO, LDT, N
- DOUBLE PRECISION SCALE, W
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION B( * ), T( LDT, * ), WORK( * ), X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN
- INTEGER I, IERR, J, J1, J2, JNEXT, K, N1, N2
- DOUBLE PRECISION BIGNUM, EPS, REC, SCALOC, SI, SMIN, SMINW,
- $ SMLNUM, SR, TJJ, TMP, XJ, XMAX, XNORM, Z
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION D( 2, 2 ), V( 2, 2 )
- * ..
- * .. External Functions ..
- INTEGER IDAMAX
- DOUBLE PRECISION DASUM, DDOT, DLAMCH, DLANGE
- EXTERNAL IDAMAX, DASUM, DDOT, DLAMCH, DLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL DAXPY, DLADIV, DLALN2, DSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- * Do not test the input parameters for errors
- *
- NOTRAN = .NOT.LTRAN
- INFO = 0
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Set constants to control overflow
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- XNORM = DLANGE( 'M', N, N, T, LDT, D )
- IF( .NOT.LREAL )
- $ XNORM = MAX( XNORM, ABS( W ), DLANGE( 'M', N, 1, B, N, D ) )
- SMIN = MAX( SMLNUM, EPS*XNORM )
- *
- * Compute 1-norm of each column of strictly upper triangular
- * part of T to control overflow in triangular solver.
- *
- WORK( 1 ) = ZERO
- DO 10 J = 2, N
- WORK( J ) = DASUM( J-1, T( 1, J ), 1 )
- 10 CONTINUE
- *
- IF( .NOT.LREAL ) THEN
- DO 20 I = 2, N
- WORK( I ) = WORK( I ) + ABS( B( I ) )
- 20 CONTINUE
- END IF
- *
- N2 = 2*N
- N1 = N
- IF( .NOT.LREAL )
- $ N1 = N2
- K = IDAMAX( N1, X, 1 )
- XMAX = ABS( X( K ) )
- SCALE = ONE
- *
- IF( XMAX.GT.BIGNUM ) THEN
- SCALE = BIGNUM / XMAX
- CALL DSCAL( N1, SCALE, X, 1 )
- XMAX = BIGNUM
- END IF
- *
- IF( LREAL ) THEN
- *
- IF( NOTRAN ) THEN
- *
- * Solve T*p = scale*c
- *
- JNEXT = N
- DO 30 J = N, 1, -1
- IF( J.GT.JNEXT )
- $ GO TO 30
- J1 = J
- J2 = J
- JNEXT = J - 1
- IF( J.GT.1 ) THEN
- IF( T( J, J-1 ).NE.ZERO ) THEN
- J1 = J - 1
- JNEXT = J - 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * Meet 1 by 1 diagonal block
- *
- * Scale to avoid overflow when computing
- * x(j) = b(j)/T(j,j)
- *
- XJ = ABS( X( J1 ) )
- TJJ = ABS( T( J1, J1 ) )
- TMP = T( J1, J1 )
- IF( TJJ.LT.SMIN ) THEN
- TMP = SMIN
- TJJ = SMIN
- INFO = 1
- END IF
- *
- IF( XJ.EQ.ZERO )
- $ GO TO 30
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.BIGNUM*TJJ ) THEN
- REC = ONE / XJ
- CALL DSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- X( J1 ) = X( J1 ) / TMP
- XJ = ABS( X( J1 ) )
- *
- * Scale x if necessary to avoid overflow when adding a
- * multiple of column j1 of T.
- *
- IF( XJ.GT.ONE ) THEN
- REC = ONE / XJ
- IF( WORK( J1 ).GT.( BIGNUM-XMAX )*REC ) THEN
- CALL DSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- END IF
- END IF
- IF( J1.GT.1 ) THEN
- CALL DAXPY( J1-1, -X( J1 ), T( 1, J1 ), 1, X, 1 )
- K = IDAMAX( J1-1, X, 1 )
- XMAX = ABS( X( K ) )
- END IF
- *
- ELSE
- *
- * Meet 2 by 2 diagonal block
- *
- * Call 2 by 2 linear system solve, to take
- * care of possible overflow by scaling factor.
- *
- D( 1, 1 ) = X( J1 )
- D( 2, 1 ) = X( J2 )
- CALL DLALN2( .FALSE., 2, 1, SMIN, ONE, T( J1, J1 ),
- $ LDT, ONE, ONE, D, 2, ZERO, ZERO, V, 2,
- $ SCALOC, XNORM, IERR )
- IF( IERR.NE.0 )
- $ INFO = 2
- *
- IF( SCALOC.NE.ONE ) THEN
- CALL DSCAL( N, SCALOC, X, 1 )
- SCALE = SCALE*SCALOC
- END IF
- X( J1 ) = V( 1, 1 )
- X( J2 ) = V( 2, 1 )
- *
- * Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2))
- * to avoid overflow in updating right-hand side.
- *
- XJ = MAX( ABS( V( 1, 1 ) ), ABS( V( 2, 1 ) ) )
- IF( XJ.GT.ONE ) THEN
- REC = ONE / XJ
- IF( MAX( WORK( J1 ), WORK( J2 ) ).GT.
- $ ( BIGNUM-XMAX )*REC ) THEN
- CALL DSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- END IF
- END IF
- *
- * Update right-hand side
- *
- IF( J1.GT.1 ) THEN
- CALL DAXPY( J1-1, -X( J1 ), T( 1, J1 ), 1, X, 1 )
- CALL DAXPY( J1-1, -X( J2 ), T( 1, J2 ), 1, X, 1 )
- K = IDAMAX( J1-1, X, 1 )
- XMAX = ABS( X( K ) )
- END IF
- *
- END IF
- *
- 30 CONTINUE
- *
- ELSE
- *
- * Solve T**T*p = scale*c
- *
- JNEXT = 1
- DO 40 J = 1, N
- IF( J.LT.JNEXT )
- $ GO TO 40
- J1 = J
- J2 = J
- JNEXT = J + 1
- IF( J.LT.N ) THEN
- IF( T( J+1, J ).NE.ZERO ) THEN
- J2 = J + 1
- JNEXT = J + 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * 1 by 1 diagonal block
- *
- * Scale if necessary to avoid overflow in forming the
- * right-hand side element by inner product.
- *
- XJ = ABS( X( J1 ) )
- IF( XMAX.GT.ONE ) THEN
- REC = ONE / XMAX
- IF( WORK( J1 ).GT.( BIGNUM-XJ )*REC ) THEN
- CALL DSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- *
- X( J1 ) = X( J1 ) - DDOT( J1-1, T( 1, J1 ), 1, X, 1 )
- *
- XJ = ABS( X( J1 ) )
- TJJ = ABS( T( J1, J1 ) )
- TMP = T( J1, J1 )
- IF( TJJ.LT.SMIN ) THEN
- TMP = SMIN
- TJJ = SMIN
- INFO = 1
- END IF
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.BIGNUM*TJJ ) THEN
- REC = ONE / XJ
- CALL DSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- X( J1 ) = X( J1 ) / TMP
- XMAX = MAX( XMAX, ABS( X( J1 ) ) )
- *
- ELSE
- *
- * 2 by 2 diagonal block
- *
- * Scale if necessary to avoid overflow in forming the
- * right-hand side elements by inner product.
- *
- XJ = MAX( ABS( X( J1 ) ), ABS( X( J2 ) ) )
- IF( XMAX.GT.ONE ) THEN
- REC = ONE / XMAX
- IF( MAX( WORK( J2 ), WORK( J1 ) ).GT.( BIGNUM-XJ )*
- $ REC ) THEN
- CALL DSCAL( N, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- *
- D( 1, 1 ) = X( J1 ) - DDOT( J1-1, T( 1, J1 ), 1, X,
- $ 1 )
- D( 2, 1 ) = X( J2 ) - DDOT( J1-1, T( 1, J2 ), 1, X,
- $ 1 )
- *
- CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, T( J1, J1 ),
- $ LDT, ONE, ONE, D, 2, ZERO, ZERO, V, 2,
- $ SCALOC, XNORM, IERR )
- IF( IERR.NE.0 )
- $ INFO = 2
- *
- IF( SCALOC.NE.ONE ) THEN
- CALL DSCAL( N, SCALOC, X, 1 )
- SCALE = SCALE*SCALOC
- END IF
- X( J1 ) = V( 1, 1 )
- X( J2 ) = V( 2, 1 )
- XMAX = MAX( ABS( X( J1 ) ), ABS( X( J2 ) ), XMAX )
- *
- END IF
- 40 CONTINUE
- END IF
- *
- ELSE
- *
- SMINW = MAX( EPS*ABS( W ), SMIN )
- IF( NOTRAN ) THEN
- *
- * Solve (T + iB)*(p+iq) = c+id
- *
- JNEXT = N
- DO 70 J = N, 1, -1
- IF( J.GT.JNEXT )
- $ GO TO 70
- J1 = J
- J2 = J
- JNEXT = J - 1
- IF( J.GT.1 ) THEN
- IF( T( J, J-1 ).NE.ZERO ) THEN
- J1 = J - 1
- JNEXT = J - 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * 1 by 1 diagonal block
- *
- * Scale if necessary to avoid overflow in division
- *
- Z = W
- IF( J1.EQ.1 )
- $ Z = B( 1 )
- XJ = ABS( X( J1 ) ) + ABS( X( N+J1 ) )
- TJJ = ABS( T( J1, J1 ) ) + ABS( Z )
- TMP = T( J1, J1 )
- IF( TJJ.LT.SMINW ) THEN
- TMP = SMINW
- TJJ = SMINW
- INFO = 1
- END IF
- *
- IF( XJ.EQ.ZERO )
- $ GO TO 70
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.BIGNUM*TJJ ) THEN
- REC = ONE / XJ
- CALL DSCAL( N2, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- CALL DLADIV( X( J1 ), X( N+J1 ), TMP, Z, SR, SI )
- X( J1 ) = SR
- X( N+J1 ) = SI
- XJ = ABS( X( J1 ) ) + ABS( X( N+J1 ) )
- *
- * Scale x if necessary to avoid overflow when adding a
- * multiple of column j1 of T.
- *
- IF( XJ.GT.ONE ) THEN
- REC = ONE / XJ
- IF( WORK( J1 ).GT.( BIGNUM-XMAX )*REC ) THEN
- CALL DSCAL( N2, REC, X, 1 )
- SCALE = SCALE*REC
- END IF
- END IF
- *
- IF( J1.GT.1 ) THEN
- CALL DAXPY( J1-1, -X( J1 ), T( 1, J1 ), 1, X, 1 )
- CALL DAXPY( J1-1, -X( N+J1 ), T( 1, J1 ), 1,
- $ X( N+1 ), 1 )
- *
- X( 1 ) = X( 1 ) + B( J1 )*X( N+J1 )
- X( N+1 ) = X( N+1 ) - B( J1 )*X( J1 )
- *
- XMAX = ZERO
- DO 50 K = 1, J1 - 1
- XMAX = MAX( XMAX, ABS( X( K ) )+
- $ ABS( X( K+N ) ) )
- 50 CONTINUE
- END IF
- *
- ELSE
- *
- * Meet 2 by 2 diagonal block
- *
- D( 1, 1 ) = X( J1 )
- D( 2, 1 ) = X( J2 )
- D( 1, 2 ) = X( N+J1 )
- D( 2, 2 ) = X( N+J2 )
- CALL DLALN2( .FALSE., 2, 2, SMINW, ONE, T( J1, J1 ),
- $ LDT, ONE, ONE, D, 2, ZERO, -W, V, 2,
- $ SCALOC, XNORM, IERR )
- IF( IERR.NE.0 )
- $ INFO = 2
- *
- IF( SCALOC.NE.ONE ) THEN
- CALL DSCAL( 2*N, SCALOC, X, 1 )
- SCALE = SCALOC*SCALE
- END IF
- X( J1 ) = V( 1, 1 )
- X( J2 ) = V( 2, 1 )
- X( N+J1 ) = V( 1, 2 )
- X( N+J2 ) = V( 2, 2 )
- *
- * Scale X(J1), .... to avoid overflow in
- * updating right hand side.
- *
- XJ = MAX( ABS( V( 1, 1 ) )+ABS( V( 1, 2 ) ),
- $ ABS( V( 2, 1 ) )+ABS( V( 2, 2 ) ) )
- IF( XJ.GT.ONE ) THEN
- REC = ONE / XJ
- IF( MAX( WORK( J1 ), WORK( J2 ) ).GT.
- $ ( BIGNUM-XMAX )*REC ) THEN
- CALL DSCAL( N2, REC, X, 1 )
- SCALE = SCALE*REC
- END IF
- END IF
- *
- * Update the right-hand side.
- *
- IF( J1.GT.1 ) THEN
- CALL DAXPY( J1-1, -X( J1 ), T( 1, J1 ), 1, X, 1 )
- CALL DAXPY( J1-1, -X( J2 ), T( 1, J2 ), 1, X, 1 )
- *
- CALL DAXPY( J1-1, -X( N+J1 ), T( 1, J1 ), 1,
- $ X( N+1 ), 1 )
- CALL DAXPY( J1-1, -X( N+J2 ), T( 1, J2 ), 1,
- $ X( N+1 ), 1 )
- *
- X( 1 ) = X( 1 ) + B( J1 )*X( N+J1 ) +
- $ B( J2 )*X( N+J2 )
- X( N+1 ) = X( N+1 ) - B( J1 )*X( J1 ) -
- $ B( J2 )*X( J2 )
- *
- XMAX = ZERO
- DO 60 K = 1, J1 - 1
- XMAX = MAX( ABS( X( K ) )+ABS( X( K+N ) ),
- $ XMAX )
- 60 CONTINUE
- END IF
- *
- END IF
- 70 CONTINUE
- *
- ELSE
- *
- * Solve (T + iB)**T*(p+iq) = c+id
- *
- JNEXT = 1
- DO 80 J = 1, N
- IF( J.LT.JNEXT )
- $ GO TO 80
- J1 = J
- J2 = J
- JNEXT = J + 1
- IF( J.LT.N ) THEN
- IF( T( J+1, J ).NE.ZERO ) THEN
- J2 = J + 1
- JNEXT = J + 2
- END IF
- END IF
- *
- IF( J1.EQ.J2 ) THEN
- *
- * 1 by 1 diagonal block
- *
- * Scale if necessary to avoid overflow in forming the
- * right-hand side element by inner product.
- *
- XJ = ABS( X( J1 ) ) + ABS( X( J1+N ) )
- IF( XMAX.GT.ONE ) THEN
- REC = ONE / XMAX
- IF( WORK( J1 ).GT.( BIGNUM-XJ )*REC ) THEN
- CALL DSCAL( N2, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- *
- X( J1 ) = X( J1 ) - DDOT( J1-1, T( 1, J1 ), 1, X, 1 )
- X( N+J1 ) = X( N+J1 ) - DDOT( J1-1, T( 1, J1 ), 1,
- $ X( N+1 ), 1 )
- IF( J1.GT.1 ) THEN
- X( J1 ) = X( J1 ) - B( J1 )*X( N+1 )
- X( N+J1 ) = X( N+J1 ) + B( J1 )*X( 1 )
- END IF
- XJ = ABS( X( J1 ) ) + ABS( X( J1+N ) )
- *
- Z = W
- IF( J1.EQ.1 )
- $ Z = B( 1 )
- *
- * Scale if necessary to avoid overflow in
- * complex division
- *
- TJJ = ABS( T( J1, J1 ) ) + ABS( Z )
- TMP = T( J1, J1 )
- IF( TJJ.LT.SMINW ) THEN
- TMP = SMINW
- TJJ = SMINW
- INFO = 1
- END IF
- *
- IF( TJJ.LT.ONE ) THEN
- IF( XJ.GT.BIGNUM*TJJ ) THEN
- REC = ONE / XJ
- CALL DSCAL( N2, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- CALL DLADIV( X( J1 ), X( N+J1 ), TMP, -Z, SR, SI )
- X( J1 ) = SR
- X( J1+N ) = SI
- XMAX = MAX( ABS( X( J1 ) )+ABS( X( J1+N ) ), XMAX )
- *
- ELSE
- *
- * 2 by 2 diagonal block
- *
- * Scale if necessary to avoid overflow in forming the
- * right-hand side element by inner product.
- *
- XJ = MAX( ABS( X( J1 ) )+ABS( X( N+J1 ) ),
- $ ABS( X( J2 ) )+ABS( X( N+J2 ) ) )
- IF( XMAX.GT.ONE ) THEN
- REC = ONE / XMAX
- IF( MAX( WORK( J1 ), WORK( J2 ) ).GT.
- $ ( BIGNUM-XJ ) / XMAX ) THEN
- CALL DSCAL( N2, REC, X, 1 )
- SCALE = SCALE*REC
- XMAX = XMAX*REC
- END IF
- END IF
- *
- D( 1, 1 ) = X( J1 ) - DDOT( J1-1, T( 1, J1 ), 1, X,
- $ 1 )
- D( 2, 1 ) = X( J2 ) - DDOT( J1-1, T( 1, J2 ), 1, X,
- $ 1 )
- D( 1, 2 ) = X( N+J1 ) - DDOT( J1-1, T( 1, J1 ), 1,
- $ X( N+1 ), 1 )
- D( 2, 2 ) = X( N+J2 ) - DDOT( J1-1, T( 1, J2 ), 1,
- $ X( N+1 ), 1 )
- D( 1, 1 ) = D( 1, 1 ) - B( J1 )*X( N+1 )
- D( 2, 1 ) = D( 2, 1 ) - B( J2 )*X( N+1 )
- D( 1, 2 ) = D( 1, 2 ) + B( J1 )*X( 1 )
- D( 2, 2 ) = D( 2, 2 ) + B( J2 )*X( 1 )
- *
- CALL DLALN2( .TRUE., 2, 2, SMINW, ONE, T( J1, J1 ),
- $ LDT, ONE, ONE, D, 2, ZERO, W, V, 2,
- $ SCALOC, XNORM, IERR )
- IF( IERR.NE.0 )
- $ INFO = 2
- *
- IF( SCALOC.NE.ONE ) THEN
- CALL DSCAL( N2, SCALOC, X, 1 )
- SCALE = SCALOC*SCALE
- END IF
- X( J1 ) = V( 1, 1 )
- X( J2 ) = V( 2, 1 )
- X( N+J1 ) = V( 1, 2 )
- X( N+J2 ) = V( 2, 2 )
- XMAX = MAX( ABS( X( J1 ) )+ABS( X( N+J1 ) ),
- $ ABS( X( J2 ) )+ABS( X( N+J2 ) ), XMAX )
- *
- END IF
- *
- 80 CONTINUE
- *
- END IF
- *
- END IF
- *
- RETURN
- *
- * End of DLAQTR
- *
- END
|