|
- *> \brief \b DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLANHS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanhs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanhs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanhs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM
- * INTEGER LDA, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLANHS returns the value of the one norm, or the Frobenius norm, or
- *> the infinity norm, or the element of largest absolute value of a
- *> Hessenberg matrix A.
- *> \endverbatim
- *>
- *> \return DLANHS
- *> \verbatim
- *>
- *> DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- *> (
- *> ( norm1(A), NORM = '1', 'O' or 'o'
- *> (
- *> ( normI(A), NORM = 'I' or 'i'
- *> (
- *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
- *>
- *> where norm1 denotes the one norm of a matrix (maximum column sum),
- *> normI denotes the infinity norm of a matrix (maximum row sum) and
- *> normF denotes the Frobenius norm of a matrix (square root of sum of
- *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies the value to be returned in DLANHS as described
- *> above.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0. When N = 0, DLANHS is
- *> set to zero.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The n by n upper Hessenberg matrix A; the part of A below the
- *> first sub-diagonal is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(N,1).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
- *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
- *> referenced.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERauxiliary
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- IMPLICIT NONE
- * .. Scalar Arguments ..
- CHARACTER NORM
- INTEGER LDA, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- DOUBLE PRECISION SUM, VALUE
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME, DISNAN
- EXTERNAL LSAME, DISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL DLASSQ, DCOMBSSQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- IF( N.EQ.0 ) THEN
- VALUE = ZERO
- ELSE IF( LSAME( NORM, 'M' ) ) THEN
- *
- * Find max(abs(A(i,j))).
- *
- VALUE = ZERO
- DO 20 J = 1, N
- DO 10 I = 1, MIN( N, J+1 )
- SUM = ABS( A( I, J ) )
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 10 CONTINUE
- 20 CONTINUE
- ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
- *
- * Find norm1(A).
- *
- VALUE = ZERO
- DO 40 J = 1, N
- SUM = ZERO
- DO 30 I = 1, MIN( N, J+1 )
- SUM = SUM + ABS( A( I, J ) )
- 30 CONTINUE
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 40 CONTINUE
- ELSE IF( LSAME( NORM, 'I' ) ) THEN
- *
- * Find normI(A).
- *
- DO 50 I = 1, N
- WORK( I ) = ZERO
- 50 CONTINUE
- DO 70 J = 1, N
- DO 60 I = 1, MIN( N, J+1 )
- WORK( I ) = WORK( I ) + ABS( A( I, J ) )
- 60 CONTINUE
- 70 CONTINUE
- VALUE = ZERO
- DO 80 I = 1, N
- SUM = WORK( I )
- IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
- 80 CONTINUE
- ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
- *
- * Find normF(A).
- * SSQ(1) is scale
- * SSQ(2) is sum-of-squares
- * For better accuracy, sum each column separately.
- *
- SSQ( 1 ) = ZERO
- SSQ( 2 ) = ONE
- DO 90 J = 1, N
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1,
- $ COLSSQ( 1 ), COLSSQ( 2 ) )
- CALL DCOMBSSQ( SSQ, COLSSQ )
- 90 CONTINUE
- VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
- END IF
- *
- DLANHS = VALUE
- RETURN
- *
- * End of DLANHS
- *
- END
|