|
- *> \brief \b DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAGV2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagv2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagv2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagv2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
- * CSR, SNR )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB
- * DOUBLE PRECISION CSL, CSR, SNL, SNR
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
- * $ B( LDB, * ), BETA( 2 )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
- *> matrix pencil (A,B) where B is upper triangular. This routine
- *> computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
- *> SNR such that
- *>
- *> 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
- *> types), then
- *>
- *> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
- *> [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
- *>
- *> [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
- *> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
- *>
- *> 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
- *> then
- *>
- *> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
- *> [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
- *>
- *> [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
- *> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
- *>
- *> where b11 >= b22 > 0.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA, 2)
- *> On entry, the 2 x 2 matrix A.
- *> On exit, A is overwritten by the ``A-part'' of the
- *> generalized Schur form.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> THe leading dimension of the array A. LDA >= 2.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB, 2)
- *> On entry, the upper triangular 2 x 2 matrix B.
- *> On exit, B is overwritten by the ``B-part'' of the
- *> generalized Schur form.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> THe leading dimension of the array B. LDB >= 2.
- *> \endverbatim
- *>
- *> \param[out] ALPHAR
- *> \verbatim
- *> ALPHAR is DOUBLE PRECISION array, dimension (2)
- *> \endverbatim
- *>
- *> \param[out] ALPHAI
- *> \verbatim
- *> ALPHAI is DOUBLE PRECISION array, dimension (2)
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is DOUBLE PRECISION array, dimension (2)
- *> (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
- *> pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
- *> be zero.
- *> \endverbatim
- *>
- *> \param[out] CSL
- *> \verbatim
- *> CSL is DOUBLE PRECISION
- *> The cosine of the left rotation matrix.
- *> \endverbatim
- *>
- *> \param[out] SNL
- *> \verbatim
- *> SNL is DOUBLE PRECISION
- *> The sine of the left rotation matrix.
- *> \endverbatim
- *>
- *> \param[out] CSR
- *> \verbatim
- *> CSR is DOUBLE PRECISION
- *> The cosine of the right rotation matrix.
- *> \endverbatim
- *>
- *> \param[out] SNR
- *> \verbatim
- *> SNR is DOUBLE PRECISION
- *> The sine of the right rotation matrix.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleOTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
- *
- * =====================================================================
- SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
- $ CSR, SNR )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB
- DOUBLE PRECISION CSL, CSR, SNL, SNR
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
- $ B( LDB, * ), BETA( 2 )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
- $ R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
- $ WR2
- * ..
- * .. External Subroutines ..
- EXTERNAL DLAG2, DLARTG, DLASV2, DROT
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH, DLAPY2
- EXTERNAL DLAMCH, DLAPY2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- SAFMIN = DLAMCH( 'S' )
- ULP = DLAMCH( 'P' )
- *
- * Scale A
- *
- ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
- $ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
- ASCALE = ONE / ANORM
- A( 1, 1 ) = ASCALE*A( 1, 1 )
- A( 1, 2 ) = ASCALE*A( 1, 2 )
- A( 2, 1 ) = ASCALE*A( 2, 1 )
- A( 2, 2 ) = ASCALE*A( 2, 2 )
- *
- * Scale B
- *
- BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
- $ SAFMIN )
- BSCALE = ONE / BNORM
- B( 1, 1 ) = BSCALE*B( 1, 1 )
- B( 1, 2 ) = BSCALE*B( 1, 2 )
- B( 2, 2 ) = BSCALE*B( 2, 2 )
- *
- * Check if A can be deflated
- *
- IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
- CSL = ONE
- SNL = ZERO
- CSR = ONE
- SNR = ZERO
- A( 2, 1 ) = ZERO
- B( 2, 1 ) = ZERO
- WI = ZERO
- *
- * Check if B is singular
- *
- ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
- CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
- CSR = ONE
- SNR = ZERO
- CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
- CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
- A( 2, 1 ) = ZERO
- B( 1, 1 ) = ZERO
- B( 2, 1 ) = ZERO
- WI = ZERO
- *
- ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
- CALL DLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
- SNR = -SNR
- CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
- CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
- CSL = ONE
- SNL = ZERO
- A( 2, 1 ) = ZERO
- B( 2, 1 ) = ZERO
- B( 2, 2 ) = ZERO
- WI = ZERO
- *
- ELSE
- *
- * B is nonsingular, first compute the eigenvalues of (A,B)
- *
- CALL DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
- $ WI )
- *
- IF( WI.EQ.ZERO ) THEN
- *
- * two real eigenvalues, compute s*A-w*B
- *
- H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
- H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
- H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
- *
- RR = DLAPY2( H1, H2 )
- QQ = DLAPY2( SCALE1*A( 2, 1 ), H3 )
- *
- IF( RR.GT.QQ ) THEN
- *
- * find right rotation matrix to zero 1,1 element of
- * (sA - wB)
- *
- CALL DLARTG( H2, H1, CSR, SNR, T )
- *
- ELSE
- *
- * find right rotation matrix to zero 2,1 element of
- * (sA - wB)
- *
- CALL DLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
- *
- END IF
- *
- SNR = -SNR
- CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
- CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
- *
- * compute inf norms of A and B
- *
- H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
- $ ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
- H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
- $ ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
- *
- IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
- *
- * find left rotation matrix Q to zero out B(2,1)
- *
- CALL DLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
- *
- ELSE
- *
- * find left rotation matrix Q to zero out A(2,1)
- *
- CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
- *
- END IF
- *
- CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
- CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
- *
- A( 2, 1 ) = ZERO
- B( 2, 1 ) = ZERO
- *
- ELSE
- *
- * a pair of complex conjugate eigenvalues
- * first compute the SVD of the matrix B
- *
- CALL DLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
- $ CSR, SNL, CSL )
- *
- * Form (A,B) := Q(A,B)Z**T where Q is left rotation matrix and
- * Z is right rotation matrix computed from DLASV2
- *
- CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
- CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
- CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
- CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
- *
- B( 2, 1 ) = ZERO
- B( 1, 2 ) = ZERO
- *
- END IF
- *
- END IF
- *
- * Unscaling
- *
- A( 1, 1 ) = ANORM*A( 1, 1 )
- A( 2, 1 ) = ANORM*A( 2, 1 )
- A( 1, 2 ) = ANORM*A( 1, 2 )
- A( 2, 2 ) = ANORM*A( 2, 2 )
- B( 1, 1 ) = BNORM*B( 1, 1 )
- B( 2, 1 ) = BNORM*B( 2, 1 )
- B( 1, 2 ) = BNORM*B( 1, 2 )
- B( 2, 2 ) = BNORM*B( 2, 2 )
- *
- IF( WI.EQ.ZERO ) THEN
- ALPHAR( 1 ) = A( 1, 1 )
- ALPHAR( 2 ) = A( 2, 2 )
- ALPHAI( 1 ) = ZERO
- ALPHAI( 2 ) = ZERO
- BETA( 1 ) = B( 1, 1 )
- BETA( 2 ) = B( 2, 2 )
- ELSE
- ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
- ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
- ALPHAR( 2 ) = ALPHAR( 1 )
- ALPHAI( 2 ) = -ALPHAI( 1 )
- BETA( 1 ) = ONE
- BETA( 2 ) = ONE
- END IF
- *
- RETURN
- *
- * End of DLAGV2
- *
- END
|