|
- *> \brief \b DLAGTS solves the system of equations (T-λI)x = y or (T-λI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAGTS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagts.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagts.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagts.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, JOB, N
- * DOUBLE PRECISION TOL
- * ..
- * .. Array Arguments ..
- * INTEGER IN( * )
- * DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ), Y( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAGTS may be used to solve one of the systems of equations
- *>
- *> (T - lambda*I)*x = y or (T - lambda*I)**T*x = y,
- *>
- *> where T is an n by n tridiagonal matrix, for x, following the
- *> factorization of (T - lambda*I) as
- *>
- *> (T - lambda*I) = P*L*U ,
- *>
- *> by routine DLAGTF. The choice of equation to be solved is
- *> controlled by the argument JOB, and in each case there is an option
- *> to perturb zero or very small diagonal elements of U, this option
- *> being intended for use in applications such as inverse iteration.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOB
- *> \verbatim
- *> JOB is INTEGER
- *> Specifies the job to be performed by DLAGTS as follows:
- *> = 1: The equations (T - lambda*I)x = y are to be solved,
- *> but diagonal elements of U are not to be perturbed.
- *> = -1: The equations (T - lambda*I)x = y are to be solved
- *> and, if overflow would otherwise occur, the diagonal
- *> elements of U are to be perturbed. See argument TOL
- *> below.
- *> = 2: The equations (T - lambda*I)**Tx = y are to be solved,
- *> but diagonal elements of U are not to be perturbed.
- *> = -2: The equations (T - lambda*I)**Tx = y are to be solved
- *> and, if overflow would otherwise occur, the diagonal
- *> elements of U are to be perturbed. See argument TOL
- *> below.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix T.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (N)
- *> On entry, A must contain the diagonal elements of U as
- *> returned from DLAGTF.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (N-1)
- *> On entry, B must contain the first super-diagonal elements of
- *> U as returned from DLAGTF.
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (N-1)
- *> On entry, C must contain the sub-diagonal elements of L as
- *> returned from DLAGTF.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N-2)
- *> On entry, D must contain the second super-diagonal elements
- *> of U as returned from DLAGTF.
- *> \endverbatim
- *>
- *> \param[in] IN
- *> \verbatim
- *> IN is INTEGER array, dimension (N)
- *> On entry, IN must contain details of the matrix P as returned
- *> from DLAGTF.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is DOUBLE PRECISION array, dimension (N)
- *> On entry, the right hand side vector y.
- *> On exit, Y is overwritten by the solution vector x.
- *> \endverbatim
- *>
- *> \param[in,out] TOL
- *> \verbatim
- *> TOL is DOUBLE PRECISION
- *> On entry, with JOB < 0, TOL should be the minimum
- *> perturbation to be made to very small diagonal elements of U.
- *> TOL should normally be chosen as about eps*norm(U), where eps
- *> is the relative machine precision, but if TOL is supplied as
- *> non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
- *> If JOB > 0 then TOL is not referenced.
- *>
- *> On exit, TOL is changed as described above, only if TOL is
- *> non-positive on entry. Otherwise TOL is unchanged.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: overflow would occur when computing the INFO(th)
- *> element of the solution vector x. This can only occur
- *> when JOB is supplied as positive and either means
- *> that a diagonal element of U is very small, or that
- *> the elements of the right-hand side vector y are very
- *> large.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, JOB, N
- DOUBLE PRECISION TOL
- * ..
- * .. Array Arguments ..
- INTEGER IN( * )
- DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ), Y( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER K
- DOUBLE PRECISION ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SIGN
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLAGTS', -INFO )
- RETURN
- END IF
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- EPS = DLAMCH( 'Epsilon' )
- SFMIN = DLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SFMIN
- *
- IF( JOB.LT.0 ) THEN
- IF( TOL.LE.ZERO ) THEN
- TOL = ABS( A( 1 ) )
- IF( N.GT.1 )
- $ TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
- DO 10 K = 3, N
- TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
- $ ABS( D( K-2 ) ) )
- 10 CONTINUE
- TOL = TOL*EPS
- IF( TOL.EQ.ZERO )
- $ TOL = EPS
- END IF
- END IF
- *
- IF( ABS( JOB ).EQ.1 ) THEN
- DO 20 K = 2, N
- IF( IN( K-1 ).EQ.0 ) THEN
- Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
- ELSE
- TEMP = Y( K-1 )
- Y( K-1 ) = Y( K )
- Y( K ) = TEMP - C( K-1 )*Y( K )
- END IF
- 20 CONTINUE
- IF( JOB.EQ.1 ) THEN
- DO 30 K = N, 1, -1
- IF( K.LE.N-2 ) THEN
- TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
- ELSE IF( K.EQ.N-1 ) THEN
- TEMP = Y( K ) - B( K )*Y( K+1 )
- ELSE
- TEMP = Y( K )
- END IF
- AK = A( K )
- ABSAK = ABS( AK )
- IF( ABSAK.LT.ONE ) THEN
- IF( ABSAK.LT.SFMIN ) THEN
- IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
- $ THEN
- INFO = K
- RETURN
- ELSE
- TEMP = TEMP*BIGNUM
- AK = AK*BIGNUM
- END IF
- ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
- INFO = K
- RETURN
- END IF
- END IF
- Y( K ) = TEMP / AK
- 30 CONTINUE
- ELSE
- DO 50 K = N, 1, -1
- IF( K.LE.N-2 ) THEN
- TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
- ELSE IF( K.EQ.N-1 ) THEN
- TEMP = Y( K ) - B( K )*Y( K+1 )
- ELSE
- TEMP = Y( K )
- END IF
- AK = A( K )
- PERT = SIGN( TOL, AK )
- 40 CONTINUE
- ABSAK = ABS( AK )
- IF( ABSAK.LT.ONE ) THEN
- IF( ABSAK.LT.SFMIN ) THEN
- IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
- $ THEN
- AK = AK + PERT
- PERT = 2*PERT
- GO TO 40
- ELSE
- TEMP = TEMP*BIGNUM
- AK = AK*BIGNUM
- END IF
- ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
- AK = AK + PERT
- PERT = 2*PERT
- GO TO 40
- END IF
- END IF
- Y( K ) = TEMP / AK
- 50 CONTINUE
- END IF
- ELSE
- *
- * Come to here if JOB = 2 or -2
- *
- IF( JOB.EQ.2 ) THEN
- DO 60 K = 1, N
- IF( K.GE.3 ) THEN
- TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
- ELSE IF( K.EQ.2 ) THEN
- TEMP = Y( K ) - B( K-1 )*Y( K-1 )
- ELSE
- TEMP = Y( K )
- END IF
- AK = A( K )
- ABSAK = ABS( AK )
- IF( ABSAK.LT.ONE ) THEN
- IF( ABSAK.LT.SFMIN ) THEN
- IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
- $ THEN
- INFO = K
- RETURN
- ELSE
- TEMP = TEMP*BIGNUM
- AK = AK*BIGNUM
- END IF
- ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
- INFO = K
- RETURN
- END IF
- END IF
- Y( K ) = TEMP / AK
- 60 CONTINUE
- ELSE
- DO 80 K = 1, N
- IF( K.GE.3 ) THEN
- TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
- ELSE IF( K.EQ.2 ) THEN
- TEMP = Y( K ) - B( K-1 )*Y( K-1 )
- ELSE
- TEMP = Y( K )
- END IF
- AK = A( K )
- PERT = SIGN( TOL, AK )
- 70 CONTINUE
- ABSAK = ABS( AK )
- IF( ABSAK.LT.ONE ) THEN
- IF( ABSAK.LT.SFMIN ) THEN
- IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
- $ THEN
- AK = AK + PERT
- PERT = 2*PERT
- GO TO 70
- ELSE
- TEMP = TEMP*BIGNUM
- AK = AK*BIGNUM
- END IF
- ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
- AK = AK + PERT
- PERT = 2*PERT
- GO TO 70
- END IF
- END IF
- Y( K ) = TEMP / AK
- 80 CONTINUE
- END IF
- *
- DO 90 K = N, 2, -1
- IF( IN( K-1 ).EQ.0 ) THEN
- Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
- ELSE
- TEMP = Y( K-1 )
- Y( K-1 ) = Y( K )
- Y( K ) = TEMP - C( K-1 )*Y( K )
- END IF
- 90 CONTINUE
- END IF
- *
- * End of DLAGTS
- *
- END
|