|
- *> \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAEV2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaev2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaev2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaev2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
- *
- * .. Scalar Arguments ..
- * DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
- *> [ A B ]
- *> [ B C ].
- *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
- *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
- *> eigenvector for RT1, giving the decomposition
- *>
- *> [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
- *> [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION
- *> The (1,1) element of the 2-by-2 matrix.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION
- *> The (1,2) element and the conjugate of the (2,1) element of
- *> the 2-by-2 matrix.
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is DOUBLE PRECISION
- *> The (2,2) element of the 2-by-2 matrix.
- *> \endverbatim
- *>
- *> \param[out] RT1
- *> \verbatim
- *> RT1 is DOUBLE PRECISION
- *> The eigenvalue of larger absolute value.
- *> \endverbatim
- *>
- *> \param[out] RT2
- *> \verbatim
- *> RT2 is DOUBLE PRECISION
- *> The eigenvalue of smaller absolute value.
- *> \endverbatim
- *>
- *> \param[out] CS1
- *> \verbatim
- *> CS1 is DOUBLE PRECISION
- *> \endverbatim
- *>
- *> \param[out] SN1
- *> \verbatim
- *> SN1 is DOUBLE PRECISION
- *> The vector (CS1, SN1) is a unit right eigenvector for RT1.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> RT1 is accurate to a few ulps barring over/underflow.
- *>
- *> RT2 may be inaccurate if there is massive cancellation in the
- *> determinant A*C-B*B; higher precision or correctly rounded or
- *> correctly truncated arithmetic would be needed to compute RT2
- *> accurately in all cases.
- *>
- *> CS1 and SN1 are accurate to a few ulps barring over/underflow.
- *>
- *> Overflow is possible only if RT1 is within a factor of 5 of overflow.
- *> Underflow is harmless if the input data is 0 or exceeds
- *> underflow_threshold / macheps.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D0 )
- DOUBLE PRECISION TWO
- PARAMETER ( TWO = 2.0D0 )
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D0 )
- DOUBLE PRECISION HALF
- PARAMETER ( HALF = 0.5D0 )
- * ..
- * .. Local Scalars ..
- INTEGER SGN1, SGN2
- DOUBLE PRECISION AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
- $ TB, TN
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Compute the eigenvalues
- *
- SM = A + C
- DF = A - C
- ADF = ABS( DF )
- TB = B + B
- AB = ABS( TB )
- IF( ABS( A ).GT.ABS( C ) ) THEN
- ACMX = A
- ACMN = C
- ELSE
- ACMX = C
- ACMN = A
- END IF
- IF( ADF.GT.AB ) THEN
- RT = ADF*SQRT( ONE+( AB / ADF )**2 )
- ELSE IF( ADF.LT.AB ) THEN
- RT = AB*SQRT( ONE+( ADF / AB )**2 )
- ELSE
- *
- * Includes case AB=ADF=0
- *
- RT = AB*SQRT( TWO )
- END IF
- IF( SM.LT.ZERO ) THEN
- RT1 = HALF*( SM-RT )
- SGN1 = -1
- *
- * Order of execution important.
- * To get fully accurate smaller eigenvalue,
- * next line needs to be executed in higher precision.
- *
- RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
- ELSE IF( SM.GT.ZERO ) THEN
- RT1 = HALF*( SM+RT )
- SGN1 = 1
- *
- * Order of execution important.
- * To get fully accurate smaller eigenvalue,
- * next line needs to be executed in higher precision.
- *
- RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
- ELSE
- *
- * Includes case RT1 = RT2 = 0
- *
- RT1 = HALF*RT
- RT2 = -HALF*RT
- SGN1 = 1
- END IF
- *
- * Compute the eigenvector
- *
- IF( DF.GE.ZERO ) THEN
- CS = DF + RT
- SGN2 = 1
- ELSE
- CS = DF - RT
- SGN2 = -1
- END IF
- ACS = ABS( CS )
- IF( ACS.GT.AB ) THEN
- CT = -TB / CS
- SN1 = ONE / SQRT( ONE+CT*CT )
- CS1 = CT*SN1
- ELSE
- IF( AB.EQ.ZERO ) THEN
- CS1 = ONE
- SN1 = ZERO
- ELSE
- TN = -CS / TB
- CS1 = ONE / SQRT( ONE+TN*TN )
- SN1 = TN*CS1
- END IF
- END IF
- IF( SGN1.EQ.SGN2 ) THEN
- TN = CS1
- CS1 = -SN1
- SN1 = TN
- END IF
- RETURN
- *
- * End of DLAEV2
- *
- END
|