|
- *> \brief <b> DGTSV computes the solution to system of linear equations A * X = B for GT matrices </b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGTSV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGTSV solves the equation
- *>
- *> A*X = B,
- *>
- *> where A is an n by n tridiagonal matrix, by Gaussian elimination with
- *> partial pivoting.
- *>
- *> Note that the equation A**T*X = B may be solved by interchanging the
- *> order of the arguments DU and DL.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] DL
- *> \verbatim
- *> DL is DOUBLE PRECISION array, dimension (N-1)
- *> On entry, DL must contain the (n-1) sub-diagonal elements of
- *> A.
- *>
- *> On exit, DL is overwritten by the (n-2) elements of the
- *> second super-diagonal of the upper triangular matrix U from
- *> the LU factorization of A, in DL(1), ..., DL(n-2).
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> On entry, D must contain the diagonal elements of A.
- *>
- *> On exit, D is overwritten by the n diagonal elements of U.
- *> \endverbatim
- *>
- *> \param[in,out] DU
- *> \verbatim
- *> DU is DOUBLE PRECISION array, dimension (N-1)
- *> On entry, DU must contain the (n-1) super-diagonal elements
- *> of A.
- *>
- *> On exit, DU is overwritten by the (n-1) elements of the first
- *> super-diagonal of U.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the N by NRHS matrix of right hand side matrix B.
- *> On exit, if INFO = 0, the N by NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, U(i,i) is exactly zero, and the solution
- *> has not been computed. The factorization has not been
- *> completed unless i = N.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleGTsolve
- *
- * =====================================================================
- SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- DOUBLE PRECISION FACT, TEMP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGTSV ', -INFO )
- RETURN
- END IF
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( NRHS.EQ.1 ) THEN
- DO 10 I = 1, N - 2
- IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
- *
- * No row interchange required
- *
- IF( D( I ).NE.ZERO ) THEN
- FACT = DL( I ) / D( I )
- D( I+1 ) = D( I+1 ) - FACT*DU( I )
- B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
- ELSE
- INFO = I
- RETURN
- END IF
- DL( I ) = ZERO
- ELSE
- *
- * Interchange rows I and I+1
- *
- FACT = D( I ) / DL( I )
- D( I ) = DL( I )
- TEMP = D( I+1 )
- D( I+1 ) = DU( I ) - FACT*TEMP
- DL( I ) = DU( I+1 )
- DU( I+1 ) = -FACT*DL( I )
- DU( I ) = TEMP
- TEMP = B( I, 1 )
- B( I, 1 ) = B( I+1, 1 )
- B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
- END IF
- 10 CONTINUE
- IF( N.GT.1 ) THEN
- I = N - 1
- IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
- IF( D( I ).NE.ZERO ) THEN
- FACT = DL( I ) / D( I )
- D( I+1 ) = D( I+1 ) - FACT*DU( I )
- B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
- ELSE
- INFO = I
- RETURN
- END IF
- ELSE
- FACT = D( I ) / DL( I )
- D( I ) = DL( I )
- TEMP = D( I+1 )
- D( I+1 ) = DU( I ) - FACT*TEMP
- DU( I ) = TEMP
- TEMP = B( I, 1 )
- B( I, 1 ) = B( I+1, 1 )
- B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
- END IF
- END IF
- IF( D( N ).EQ.ZERO ) THEN
- INFO = N
- RETURN
- END IF
- ELSE
- DO 40 I = 1, N - 2
- IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
- *
- * No row interchange required
- *
- IF( D( I ).NE.ZERO ) THEN
- FACT = DL( I ) / D( I )
- D( I+1 ) = D( I+1 ) - FACT*DU( I )
- DO 20 J = 1, NRHS
- B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
- 20 CONTINUE
- ELSE
- INFO = I
- RETURN
- END IF
- DL( I ) = ZERO
- ELSE
- *
- * Interchange rows I and I+1
- *
- FACT = D( I ) / DL( I )
- D( I ) = DL( I )
- TEMP = D( I+1 )
- D( I+1 ) = DU( I ) - FACT*TEMP
- DL( I ) = DU( I+1 )
- DU( I+1 ) = -FACT*DL( I )
- DU( I ) = TEMP
- DO 30 J = 1, NRHS
- TEMP = B( I, J )
- B( I, J ) = B( I+1, J )
- B( I+1, J ) = TEMP - FACT*B( I+1, J )
- 30 CONTINUE
- END IF
- 40 CONTINUE
- IF( N.GT.1 ) THEN
- I = N - 1
- IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
- IF( D( I ).NE.ZERO ) THEN
- FACT = DL( I ) / D( I )
- D( I+1 ) = D( I+1 ) - FACT*DU( I )
- DO 50 J = 1, NRHS
- B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
- 50 CONTINUE
- ELSE
- INFO = I
- RETURN
- END IF
- ELSE
- FACT = D( I ) / DL( I )
- D( I ) = DL( I )
- TEMP = D( I+1 )
- D( I+1 ) = DU( I ) - FACT*TEMP
- DU( I ) = TEMP
- DO 60 J = 1, NRHS
- TEMP = B( I, J )
- B( I, J ) = B( I+1, J )
- B( I+1, J ) = TEMP - FACT*B( I+1, J )
- 60 CONTINUE
- END IF
- END IF
- IF( D( N ).EQ.ZERO ) THEN
- INFO = N
- RETURN
- END IF
- END IF
- *
- * Back solve with the matrix U from the factorization.
- *
- IF( NRHS.LE.2 ) THEN
- J = 1
- 70 CONTINUE
- B( N, J ) = B( N, J ) / D( N )
- IF( N.GT.1 )
- $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
- DO 80 I = N - 2, 1, -1
- B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
- $ B( I+2, J ) ) / D( I )
- 80 CONTINUE
- IF( J.LT.NRHS ) THEN
- J = J + 1
- GO TO 70
- END IF
- ELSE
- DO 100 J = 1, NRHS
- B( N, J ) = B( N, J ) / D( N )
- IF( N.GT.1 )
- $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
- $ D( N-1 )
- DO 90 I = N - 2, 1, -1
- B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
- $ B( I+2, J ) ) / D( I )
- 90 CONTINUE
- 100 CONTINUE
- END IF
- *
- RETURN
- *
- * End of DGTSV
- *
- END
|