|
- *> \brief <b> DGELSY solves overdetermined or underdetermined systems for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGELSY + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsy.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsy.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsy.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
- * WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
- * DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER JPVT( * )
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGELSY computes the minimum-norm solution to a real linear least
- *> squares problem:
- *> minimize || A * X - B ||
- *> using a complete orthogonal factorization of A. A is an M-by-N
- *> matrix which may be rank-deficient.
- *>
- *> Several right hand side vectors b and solution vectors x can be
- *> handled in a single call; they are stored as the columns of the
- *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
- *> matrix X.
- *>
- *> The routine first computes a QR factorization with column pivoting:
- *> A * P = Q * [ R11 R12 ]
- *> [ 0 R22 ]
- *> with R11 defined as the largest leading submatrix whose estimated
- *> condition number is less than 1/RCOND. The order of R11, RANK,
- *> is the effective rank of A.
- *>
- *> Then, R22 is considered to be negligible, and R12 is annihilated
- *> by orthogonal transformations from the right, arriving at the
- *> complete orthogonal factorization:
- *> A * P = Q * [ T11 0 ] * Z
- *> [ 0 0 ]
- *> The minimum-norm solution is then
- *> X = P * Z**T [ inv(T11)*Q1**T*B ]
- *> [ 0 ]
- *> where Q1 consists of the first RANK columns of Q.
- *>
- *> This routine is basically identical to the original xGELSX except
- *> three differences:
- *> o The call to the subroutine xGEQPF has been substituted by the
- *> the call to the subroutine xGEQP3. This subroutine is a Blas-3
- *> version of the QR factorization with column pivoting.
- *> o Matrix B (the right hand side) is updated with Blas-3.
- *> o The permutation of matrix B (the right hand side) is faster and
- *> more simple.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of
- *> columns of matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, A has been overwritten by details of its
- *> complete orthogonal factorization.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the M-by-NRHS right hand side matrix B.
- *> On exit, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,M,N).
- *> \endverbatim
- *>
- *> \param[in,out] JPVT
- *> \verbatim
- *> JPVT is INTEGER array, dimension (N)
- *> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
- *> to the front of AP, otherwise column i is a free column.
- *> On exit, if JPVT(i) = k, then the i-th column of AP
- *> was the k-th column of A.
- *> \endverbatim
- *>
- *> \param[in] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> RCOND is used to determine the effective rank of A, which
- *> is defined as the order of the largest leading triangular
- *> submatrix R11 in the QR factorization with pivoting of A,
- *> whose estimated condition number < 1/RCOND.
- *> \endverbatim
- *>
- *> \param[out] RANK
- *> \verbatim
- *> RANK is INTEGER
- *> The effective rank of A, i.e., the order of the submatrix
- *> R11. This is the same as the order of the submatrix T11
- *> in the complete orthogonal factorization of A.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> The unblocked strategy requires that:
- *> LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
- *> where MN = min( M, N ).
- *> The block algorithm requires that:
- *> LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
- *> where NB is an upper bound on the blocksize returned
- *> by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
- *> and DORMRZ.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: If INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleGEsolve
- *
- *> \par Contributors:
- * ==================
- *>
- *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n
- *> E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
- *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
- *>
- * =====================================================================
- SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
- $ WORK, LWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
- DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- INTEGER JPVT( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER IMAX, IMIN
- PARAMETER ( IMAX = 1, IMIN = 2 )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
- $ LWKOPT, MN, NB, NB1, NB2, NB3, NB4
- DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
- $ SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL ILAENV, DLAMCH, DLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
- $ DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- MN = MIN( M, N )
- ISMIN = MN + 1
- ISMAX = 2*MN + 1
- *
- * Test the input arguments.
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
- INFO = -7
- END IF
- *
- * Figure out optimal block size
- *
- IF( INFO.EQ.0 ) THEN
- IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
- LWKMIN = 1
- LWKOPT = 1
- ELSE
- NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
- NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
- NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
- NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
- NB = MAX( NB1, NB2, NB3, NB4 )
- LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
- LWKOPT = MAX( LWKMIN,
- $ MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
- END IF
- WORK( 1 ) = LWKOPT
- *
- IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGELSY', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
- RANK = 0
- RETURN
- END IF
- *
- * Get machine parameters
- *
- SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- *
- * Scale A, B if max entries outside range [SMLNUM,BIGNUM]
- *
- ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
- IASCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
- IASCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
- IASCL = 2
- ELSE IF( ANRM.EQ.ZERO ) THEN
- *
- * Matrix all zero. Return zero solution.
- *
- CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
- RANK = 0
- GO TO 70
- END IF
- *
- BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
- IBSCL = 0
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 1
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 2
- END IF
- *
- * Compute QR factorization with column pivoting of A:
- * A * P = Q * R
- *
- CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
- $ LWORK-MN, INFO )
- WSIZE = MN + WORK( MN+1 )
- *
- * workspace: MN+2*N+NB*(N+1).
- * Details of Householder rotations stored in WORK(1:MN).
- *
- * Determine RANK using incremental condition estimation
- *
- WORK( ISMIN ) = ONE
- WORK( ISMAX ) = ONE
- SMAX = ABS( A( 1, 1 ) )
- SMIN = SMAX
- IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
- RANK = 0
- CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
- GO TO 70
- ELSE
- RANK = 1
- END IF
- *
- 10 CONTINUE
- IF( RANK.LT.MN ) THEN
- I = RANK + 1
- CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
- $ A( I, I ), SMINPR, S1, C1 )
- CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
- $ A( I, I ), SMAXPR, S2, C2 )
- *
- IF( SMAXPR*RCOND.LE.SMINPR ) THEN
- DO 20 I = 1, RANK
- WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
- WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
- 20 CONTINUE
- WORK( ISMIN+RANK ) = C1
- WORK( ISMAX+RANK ) = C2
- SMIN = SMINPR
- SMAX = SMAXPR
- RANK = RANK + 1
- GO TO 10
- END IF
- END IF
- *
- * workspace: 3*MN.
- *
- * Logically partition R = [ R11 R12 ]
- * [ 0 R22 ]
- * where R11 = R(1:RANK,1:RANK)
- *
- * [R11,R12] = [ T11, 0 ] * Y
- *
- IF( RANK.LT.N )
- $ CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
- $ LWORK-2*MN, INFO )
- *
- * workspace: 2*MN.
- * Details of Householder rotations stored in WORK(MN+1:2*MN)
- *
- * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
- *
- CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
- $ B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
- WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
- *
- * workspace: 2*MN+NB*NRHS.
- *
- * B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
- *
- CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
- $ NRHS, ONE, A, LDA, B, LDB )
- *
- DO 40 J = 1, NRHS
- DO 30 I = RANK + 1, N
- B( I, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- *
- * B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
- *
- IF( RANK.LT.N ) THEN
- CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
- $ LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
- $ LWORK-2*MN, INFO )
- END IF
- *
- * workspace: 2*MN+NRHS.
- *
- * B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
- *
- DO 60 J = 1, NRHS
- DO 50 I = 1, N
- WORK( JPVT( I ) ) = B( I, J )
- 50 CONTINUE
- CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
- 60 CONTINUE
- *
- * workspace: N.
- *
- * Undo scaling
- *
- IF( IASCL.EQ.1 ) THEN
- CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
- CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
- $ INFO )
- ELSE IF( IASCL.EQ.2 ) THEN
- CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
- CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
- $ INFO )
- END IF
- IF( IBSCL.EQ.1 ) THEN
- CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
- ELSE IF( IBSCL.EQ.2 ) THEN
- CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
- END IF
- *
- 70 CONTINUE
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of DGELSY
- *
- END
|