|
- *> \brief \b DGBTRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGBTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbtrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbtrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbtrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, KL, KU, LDAB, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGBTRF computes an LU factorization of a real m-by-n band matrix A
- *> using partial pivoting with row interchanges.
- *>
- *> This is the blocked version of the algorithm, calling Level 3 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
- *> On entry, the matrix A in band storage, in rows KL+1 to
- *> 2*KL+KU+1; rows 1 to KL of the array need not be set.
- *> The j-th column of A is stored in the j-th column of the
- *> array AB as follows:
- *> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
- *>
- *> On exit, details of the factorization: U is stored as an
- *> upper triangular band matrix with KL+KU superdiagonals in
- *> rows 1 to KL+KU+1, and the multipliers used during the
- *> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
- *> See below for further details.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (min(M,N))
- *> The pivot indices; for 1 <= i <= min(M,N), row i of the
- *> matrix was interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly
- *> singular, and division by zero will occur if it is used
- *> to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleGBcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The band storage scheme is illustrated by the following example, when
- *> M = N = 6, KL = 2, KU = 1:
- *>
- *> On entry: On exit:
- *>
- *> * * * + + + * * * u14 u25 u36
- *> * * + + + + * * u13 u24 u35 u46
- *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
- *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
- *> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
- *> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
- *>
- *> Array elements marked * are not used by the routine; elements marked
- *> + need not be set on entry, but are required by the routine to store
- *> elements of U because of fill-in resulting from the row interchanges.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, KL, KU, LDAB, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- INTEGER NBMAX, LDWORK
- PARAMETER ( NBMAX = 64, LDWORK = NBMAX+1 )
- * ..
- * .. Local Scalars ..
- INTEGER I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
- $ JU, K2, KM, KV, NB, NW
- DOUBLE PRECISION TEMP
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION WORK13( LDWORK, NBMAX ),
- $ WORK31( LDWORK, NBMAX )
- * ..
- * .. External Functions ..
- INTEGER IDAMAX, ILAENV
- EXTERNAL IDAMAX, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DGBTF2, DGEMM, DGER, DLASWP, DSCAL,
- $ DSWAP, DTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * KV is the number of superdiagonals in the factor U, allowing for
- * fill-in
- *
- KV = KU + KL
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KL.LT.0 ) THEN
- INFO = -3
- ELSE IF( KU.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KL+KV+1 ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGBTRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment
- *
- NB = ILAENV( 1, 'DGBTRF', ' ', M, N, KL, KU )
- *
- * The block size must not exceed the limit set by the size of the
- * local arrays WORK13 and WORK31.
- *
- NB = MIN( NB, NBMAX )
- *
- IF( NB.LE.1 .OR. NB.GT.KL ) THEN
- *
- * Use unblocked code
- *
- CALL DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
- ELSE
- *
- * Use blocked code
- *
- * Zero the superdiagonal elements of the work array WORK13
- *
- DO 20 J = 1, NB
- DO 10 I = 1, J - 1
- WORK13( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- *
- * Zero the subdiagonal elements of the work array WORK31
- *
- DO 40 J = 1, NB
- DO 30 I = J + 1, NB
- WORK31( I, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- *
- * Gaussian elimination with partial pivoting
- *
- * Set fill-in elements in columns KU+2 to KV to zero
- *
- DO 60 J = KU + 2, MIN( KV, N )
- DO 50 I = KV - J + 2, KL
- AB( I, J ) = ZERO
- 50 CONTINUE
- 60 CONTINUE
- *
- * JU is the index of the last column affected by the current
- * stage of the factorization
- *
- JU = 1
- *
- DO 180 J = 1, MIN( M, N ), NB
- JB = MIN( NB, MIN( M, N )-J+1 )
- *
- * The active part of the matrix is partitioned
- *
- * A11 A12 A13
- * A21 A22 A23
- * A31 A32 A33
- *
- * Here A11, A21 and A31 denote the current block of JB columns
- * which is about to be factorized. The number of rows in the
- * partitioning are JB, I2, I3 respectively, and the numbers
- * of columns are JB, J2, J3. The superdiagonal elements of A13
- * and the subdiagonal elements of A31 lie outside the band.
- *
- I2 = MIN( KL-JB, M-J-JB+1 )
- I3 = MIN( JB, M-J-KL+1 )
- *
- * J2 and J3 are computed after JU has been updated.
- *
- * Factorize the current block of JB columns
- *
- DO 80 JJ = J, J + JB - 1
- *
- * Set fill-in elements in column JJ+KV to zero
- *
- IF( JJ+KV.LE.N ) THEN
- DO 70 I = 1, KL
- AB( I, JJ+KV ) = ZERO
- 70 CONTINUE
- END IF
- *
- * Find pivot and test for singularity. KM is the number of
- * subdiagonal elements in the current column.
- *
- KM = MIN( KL, M-JJ )
- JP = IDAMAX( KM+1, AB( KV+1, JJ ), 1 )
- IPIV( JJ ) = JP + JJ - J
- IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
- JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
- IF( JP.NE.1 ) THEN
- *
- * Apply interchange to columns J to J+JB-1
- *
- IF( JP+JJ-1.LT.J+KL ) THEN
- *
- CALL DSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
- $ AB( KV+JP+JJ-J, J ), LDAB-1 )
- ELSE
- *
- * The interchange affects columns J to JJ-1 of A31
- * which are stored in the work array WORK31
- *
- CALL DSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
- $ WORK31( JP+JJ-J-KL, 1 ), LDWORK )
- CALL DSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
- $ AB( KV+JP, JJ ), LDAB-1 )
- END IF
- END IF
- *
- * Compute multipliers
- *
- CALL DSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
- $ 1 )
- *
- * Update trailing submatrix within the band and within
- * the current block. JM is the index of the last column
- * which needs to be updated.
- *
- JM = MIN( JU, J+JB-1 )
- IF( JM.GT.JJ )
- $ CALL DGER( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
- $ AB( KV, JJ+1 ), LDAB-1,
- $ AB( KV+1, JJ+1 ), LDAB-1 )
- ELSE
- *
- * If pivot is zero, set INFO to the index of the pivot
- * unless a zero pivot has already been found.
- *
- IF( INFO.EQ.0 )
- $ INFO = JJ
- END IF
- *
- * Copy current column of A31 into the work array WORK31
- *
- NW = MIN( JJ-J+1, I3 )
- IF( NW.GT.0 )
- $ CALL DCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
- $ WORK31( 1, JJ-J+1 ), 1 )
- 80 CONTINUE
- IF( J+JB.LE.N ) THEN
- *
- * Apply the row interchanges to the other blocks.
- *
- J2 = MIN( JU-J+1, KV ) - JB
- J3 = MAX( 0, JU-J-KV+1 )
- *
- * Use DLASWP to apply the row interchanges to A12, A22, and
- * A32.
- *
- CALL DLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-1, 1, JB,
- $ IPIV( J ), 1 )
- *
- * Adjust the pivot indices.
- *
- DO 90 I = J, J + JB - 1
- IPIV( I ) = IPIV( I ) + J - 1
- 90 CONTINUE
- *
- * Apply the row interchanges to A13, A23, and A33
- * columnwise.
- *
- K2 = J - 1 + JB + J2
- DO 110 I = 1, J3
- JJ = K2 + I
- DO 100 II = J + I - 1, J + JB - 1
- IP = IPIV( II )
- IF( IP.NE.II ) THEN
- TEMP = AB( KV+1+II-JJ, JJ )
- AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ )
- AB( KV+1+IP-JJ, JJ ) = TEMP
- END IF
- 100 CONTINUE
- 110 CONTINUE
- *
- * Update the relevant part of the trailing submatrix
- *
- IF( J2.GT.0 ) THEN
- *
- * Update A12
- *
- CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
- $ JB, J2, ONE, AB( KV+1, J ), LDAB-1,
- $ AB( KV+1-JB, J+JB ), LDAB-1 )
- *
- IF( I2.GT.0 ) THEN
- *
- * Update A22
- *
- CALL DGEMM( 'No transpose', 'No transpose', I2, J2,
- $ JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
- $ AB( KV+1-JB, J+JB ), LDAB-1, ONE,
- $ AB( KV+1, J+JB ), LDAB-1 )
- END IF
- *
- IF( I3.GT.0 ) THEN
- *
- * Update A32
- *
- CALL DGEMM( 'No transpose', 'No transpose', I3, J2,
- $ JB, -ONE, WORK31, LDWORK,
- $ AB( KV+1-JB, J+JB ), LDAB-1, ONE,
- $ AB( KV+KL+1-JB, J+JB ), LDAB-1 )
- END IF
- END IF
- *
- IF( J3.GT.0 ) THEN
- *
- * Copy the lower triangle of A13 into the work array
- * WORK13
- *
- DO 130 JJ = 1, J3
- DO 120 II = JJ, JB
- WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
- 120 CONTINUE
- 130 CONTINUE
- *
- * Update A13 in the work array
- *
- CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
- $ JB, J3, ONE, AB( KV+1, J ), LDAB-1,
- $ WORK13, LDWORK )
- *
- IF( I2.GT.0 ) THEN
- *
- * Update A23
- *
- CALL DGEMM( 'No transpose', 'No transpose', I2, J3,
- $ JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
- $ WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
- $ LDAB-1 )
- END IF
- *
- IF( I3.GT.0 ) THEN
- *
- * Update A33
- *
- CALL DGEMM( 'No transpose', 'No transpose', I3, J3,
- $ JB, -ONE, WORK31, LDWORK, WORK13,
- $ LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
- END IF
- *
- * Copy the lower triangle of A13 back into place
- *
- DO 150 JJ = 1, J3
- DO 140 II = JJ, JB
- AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
- 140 CONTINUE
- 150 CONTINUE
- END IF
- ELSE
- *
- * Adjust the pivot indices.
- *
- DO 160 I = J, J + JB - 1
- IPIV( I ) = IPIV( I ) + J - 1
- 160 CONTINUE
- END IF
- *
- * Partially undo the interchanges in the current block to
- * restore the upper triangular form of A31 and copy the upper
- * triangle of A31 back into place
- *
- DO 170 JJ = J + JB - 1, J, -1
- JP = IPIV( JJ ) - JJ + 1
- IF( JP.NE.1 ) THEN
- *
- * Apply interchange to columns J to JJ-1
- *
- IF( JP+JJ-1.LT.J+KL ) THEN
- *
- * The interchange does not affect A31
- *
- CALL DSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
- $ AB( KV+JP+JJ-J, J ), LDAB-1 )
- ELSE
- *
- * The interchange does affect A31
- *
- CALL DSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
- $ WORK31( JP+JJ-J-KL, 1 ), LDWORK )
- END IF
- END IF
- *
- * Copy the current column of A31 back into place
- *
- NW = MIN( I3, JJ-J+1 )
- IF( NW.GT.0 )
- $ CALL DCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
- $ AB( KV+KL+1-JJ+J, JJ ), 1 )
- 170 CONTINUE
- 180 CONTINUE
- END IF
- *
- RETURN
- *
- * End of DGBTRF
- *
- END
|