|
- *> \brief \b CUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CUNMR2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmr2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmr2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmr2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
- * WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS
- * INTEGER INFO, K, LDA, LDC, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CUNMR2 overwrites the general complex m-by-n matrix C with
- *>
- *> Q * C if SIDE = 'L' and TRANS = 'N', or
- *>
- *> Q**H* C if SIDE = 'L' and TRANS = 'C', or
- *>
- *> C * Q if SIDE = 'R' and TRANS = 'N', or
- *>
- *> C * Q**H if SIDE = 'R' and TRANS = 'C',
- *>
- *> where Q is a complex unitary matrix defined as the product of k
- *> elementary reflectors
- *>
- *> Q = H(1)**H H(2)**H . . . H(k)**H
- *>
- *> as returned by CGERQF. Q is of order m if SIDE = 'L' and of order n
- *> if SIDE = 'R'.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**H from the Left
- *> = 'R': apply Q or Q**H from the Right
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': apply Q (No transpose)
- *> = 'C': apply Q**H (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines
- *> the matrix Q.
- *> If SIDE = 'L', M >= K >= 0;
- *> if SIDE = 'R', N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension
- *> (LDA,M) if SIDE = 'L',
- *> (LDA,N) if SIDE = 'R'
- *> The i-th row must contain the vector which defines the
- *> elementary reflector H(i), for i = 1,2,...,k, as returned by
- *> CGERQF in the last k rows of its array argument A.
- *> A is modified by the routine but restored on exit.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,K).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by CGERQF.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is COMPLEX array, dimension (LDC,N)
- *> On entry, the m-by-n matrix C.
- *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension
- *> (N) if SIDE = 'L',
- *> (M) if SIDE = 'R'
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE CUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
- $ WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, K, LDA, LDC, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LEFT, NOTRAN
- INTEGER I, I1, I2, I3, MI, NI, NQ
- COMPLEX AII, TAUI
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CLACGV, CLARF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- *
- * NQ is the order of Q
- *
- IF( LEFT ) THEN
- NQ = M
- ELSE
- NQ = N
- END IF
- IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
- INFO = -7
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CUNMR2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
- $ RETURN
- *
- IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
- I1 = 1
- I2 = K
- I3 = 1
- ELSE
- I1 = K
- I2 = 1
- I3 = -1
- END IF
- *
- IF( LEFT ) THEN
- NI = N
- ELSE
- MI = M
- END IF
- *
- DO 10 I = I1, I2, I3
- IF( LEFT ) THEN
- *
- * H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
- *
- MI = M - K + I
- ELSE
- *
- * H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
- *
- NI = N - K + I
- END IF
- *
- * Apply H(i) or H(i)**H
- *
- IF( NOTRAN ) THEN
- TAUI = CONJG( TAU( I ) )
- ELSE
- TAUI = TAU( I )
- END IF
- CALL CLACGV( NQ-K+I-1, A( I, 1 ), LDA )
- AII = A( I, NQ-K+I )
- A( I, NQ-K+I ) = ONE
- CALL CLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAUI, C, LDC, WORK )
- A( I, NQ-K+I ) = AII
- CALL CLACGV( NQ-K+I-1, A( I, 1 ), LDA )
- 10 CONTINUE
- RETURN
- *
- * End of CUNMR2
- *
- END
|