|
- *> \brief \b CUNCSD2BY1
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CUNCSD2BY1 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cuncsd2by1.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cuncsd2by1.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cuncsd2by1.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
- * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
- * LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBU1, JOBU2, JOBV1T
- * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
- * $ M, P, Q
- * INTEGER LRWORK, LRWORKMIN, LRWORKOPT
- * ..
- * .. Array Arguments ..
- * REAL RWORK(*)
- * REAL THETA(*)
- * COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
- * $ X11(LDX11,*), X21(LDX21,*)
- * INTEGER IWORK(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *>\verbatim
- *>
- *> CUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
- *> orthonormal columns that has been partitioned into a 2-by-1 block
- *> structure:
- *>
- *> [ I1 0 0 ]
- *> [ 0 C 0 ]
- *> [ X11 ] [ U1 | ] [ 0 0 0 ]
- *> X = [-----] = [---------] [----------] V1**T .
- *> [ X21 ] [ | U2 ] [ 0 0 0 ]
- *> [ 0 S 0 ]
- *> [ 0 0 I2]
- *>
- *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
- *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
- *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
- *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
- *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU1
- *> \verbatim
- *> JOBU1 is CHARACTER
- *> = 'Y': U1 is computed;
- *> otherwise: U1 is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBU2
- *> \verbatim
- *> JOBU2 is CHARACTER
- *> = 'Y': U2 is computed;
- *> otherwise: U2 is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBV1T
- *> \verbatim
- *> JOBV1T is CHARACTER
- *> = 'Y': V1T is computed;
- *> otherwise: V1T is not computed.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows in X.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows in X11. 0 <= P <= M.
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is INTEGER
- *> The number of columns in X11 and X21. 0 <= Q <= M.
- *> \endverbatim
- *>
- *> \param[in,out] X11
- *> \verbatim
- *> X11 is COMPLEX array, dimension (LDX11,Q)
- *> On entry, part of the unitary matrix whose CSD is desired.
- *> \endverbatim
- *>
- *> \param[in] LDX11
- *> \verbatim
- *> LDX11 is INTEGER
- *> The leading dimension of X11. LDX11 >= MAX(1,P).
- *> \endverbatim
- *>
- *> \param[in,out] X21
- *> \verbatim
- *> X21 is COMPLEX array, dimension (LDX21,Q)
- *> On entry, part of the unitary matrix whose CSD is desired.
- *> \endverbatim
- *>
- *> \param[in] LDX21
- *> \verbatim
- *> LDX21 is INTEGER
- *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
- *> \endverbatim
- *>
- *> \param[out] THETA
- *> \verbatim
- *> THETA is REAL array, dimension (R), in which R =
- *> MIN(P,M-P,Q,M-Q).
- *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
- *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
- *> \endverbatim
- *>
- *> \param[out] U1
- *> \verbatim
- *> U1 is COMPLEX array, dimension (P)
- *> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
- *> \endverbatim
- *>
- *> \param[in] LDU1
- *> \verbatim
- *> LDU1 is INTEGER
- *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
- *> MAX(1,P).
- *> \endverbatim
- *>
- *> \param[out] U2
- *> \verbatim
- *> U2 is COMPLEX array, dimension (M-P)
- *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
- *> matrix U2.
- *> \endverbatim
- *>
- *> \param[in] LDU2
- *> \verbatim
- *> LDU2 is INTEGER
- *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
- *> MAX(1,M-P).
- *> \endverbatim
- *>
- *> \param[out] V1T
- *> \verbatim
- *> V1T is COMPLEX array, dimension (Q)
- *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
- *> matrix V1**T.
- *> \endverbatim
- *>
- *> \param[in] LDV1T
- *> \verbatim
- *> LDV1T is INTEGER
- *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
- *> MAX(1,Q).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the work array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (MAX(1,LRWORK))
- *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
- *> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
- *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
- *> define the matrix in intermediate bidiagonal-block form
- *> remaining after nonconvergence. INFO specifies the number
- *> of nonzero PHI's.
- *> \endverbatim
- *>
- *> \param[in] LRWORK
- *> \verbatim
- *> LRWORK is INTEGER
- *> The dimension of the array RWORK.
- *>
- *> If LRWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the RWORK array, returns
- *> this value as the first entry of the work array, and no error
- *> message related to LRWORK is issued by XERBLA.
- *> \endverbatim
- *
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: CBBCSD did not converge. See the description of WORK
- *> above for details.
- *> \endverbatim
- *
- *> \par References:
- * ================
- *>
- *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
- *> Algorithms, 50(1):33-65, 2009.
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
- $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
- $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
- $ INFO )
- *
- * -- LAPACK computational routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBU1, JOBU2, JOBV1T
- INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
- $ M, P, Q
- INTEGER LRWORK, LRWORKMIN, LRWORKOPT
- * ..
- * .. Array Arguments ..
- REAL RWORK(*)
- REAL THETA(*)
- COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
- $ X11(LDX11,*), X21(LDX21,*)
- INTEGER IWORK(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE, ZERO
- PARAMETER ( ONE = (1.0E0,0.0E0), ZERO = (0.0E0,0.0E0) )
- * ..
- * .. Local Scalars ..
- INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
- $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
- $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
- $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
- $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
- $ LWORKMIN, LWORKOPT, R
- LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
- * ..
- * .. Local Arrays ..
- REAL DUM( 1 )
- COMPLEX CDUM( 1, 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL CBBCSD, CCOPY, CLACPY, CLAPMR, CLAPMT, CUNBDB1,
- $ CUNBDB2, CUNBDB3, CUNBDB4, CUNGLQ, CUNGQR,
- $ XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Intrinsic Function ..
- INTRINSIC INT, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test input arguments
- *
- INFO = 0
- WANTU1 = LSAME( JOBU1, 'Y' )
- WANTU2 = LSAME( JOBU2, 'Y' )
- WANTV1T = LSAME( JOBV1T, 'Y' )
- LQUERY = LWORK .EQ. -1
- *
- IF( M .LT. 0 ) THEN
- INFO = -4
- ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
- INFO = -5
- ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
- INFO = -6
- ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
- INFO = -8
- ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
- INFO = -10
- ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
- INFO = -13
- ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
- INFO = -15
- ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
- INFO = -17
- END IF
- *
- R = MIN( P, M-P, Q, M-Q )
- *
- * Compute workspace
- *
- * WORK layout:
- * |-----------------------------------------|
- * | LWORKOPT (1) |
- * |-----------------------------------------|
- * | TAUP1 (MAX(1,P)) |
- * | TAUP2 (MAX(1,M-P)) |
- * | TAUQ1 (MAX(1,Q)) |
- * |-----------------------------------------|
- * | CUNBDB WORK | CUNGQR WORK | CUNGLQ WORK |
- * | | | |
- * | | | |
- * | | | |
- * | | | |
- * |-----------------------------------------|
- * RWORK layout:
- * |------------------|
- * | LRWORKOPT (1) |
- * |------------------|
- * | PHI (MAX(1,R-1)) |
- * |------------------|
- * | B11D (R) |
- * | B11E (R-1) |
- * | B12D (R) |
- * | B12E (R-1) |
- * | B21D (R) |
- * | B21E (R-1) |
- * | B22D (R) |
- * | B22E (R-1) |
- * | CBBCSD RWORK |
- * |------------------|
- *
- IF( INFO .EQ. 0 ) THEN
- IPHI = 2
- IB11D = IPHI + MAX( 1, R-1 )
- IB11E = IB11D + MAX( 1, R )
- IB12D = IB11E + MAX( 1, R - 1 )
- IB12E = IB12D + MAX( 1, R )
- IB21D = IB12E + MAX( 1, R - 1 )
- IB21E = IB21D + MAX( 1, R )
- IB22D = IB21E + MAX( 1, R - 1 )
- IB22E = IB22D + MAX( 1, R )
- IBBCSD = IB22E + MAX( 1, R - 1 )
- ITAUP1 = 2
- ITAUP2 = ITAUP1 + MAX( 1, P )
- ITAUQ1 = ITAUP2 + MAX( 1, M-P )
- IORBDB = ITAUQ1 + MAX( 1, Q )
- IORGQR = ITAUQ1 + MAX( 1, Q )
- IORGLQ = ITAUQ1 + MAX( 1, Q )
- LORGQRMIN = 1
- LORGQROPT = 1
- LORGLQMIN = 1
- LORGLQOPT = 1
- IF( R .EQ. Q ) THEN
- CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
- $ DUM, CDUM, CDUM, CDUM, WORK, -1,
- $ CHILDINFO )
- LORBDB = INT( WORK(1) )
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL CUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, P )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- ENDIF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL CUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, M-P )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL CUNGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
- $ CDUM, WORK(1), -1, CHILDINFO )
- LORGLQMIN = MAX( LORGLQMIN, Q-1 )
- LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
- END IF
- CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
- $ DUM(1), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
- $ 1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
- $ RWORK(1), -1, CHILDINFO )
- LBBCSD = INT( RWORK(1) )
- ELSE IF( R .EQ. P ) THEN
- CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
- $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
- LORBDB = INT( WORK(1) )
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, CDUM, WORK(1),
- $ -1, CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, P-1 )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL CUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, M-P )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL CUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGLQMIN = MAX( LORGLQMIN, Q )
- LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
- END IF
- CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
- $ DUM, V1T, LDV1T, CDUM, 1, U1, LDU1, U2, LDU2,
- $ DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
- $ RWORK(1), -1, CHILDINFO )
- LBBCSD = INT( RWORK(1) )
- ELSE IF( R .EQ. M-P ) THEN
- CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
- $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
- LORBDB = INT( WORK(1) )
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL CUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, P )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, CDUM,
- $ WORK(1), -1, CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL CUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGLQMIN = MAX( LORGLQMIN, Q )
- LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
- END IF
- CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
- $ THETA, DUM, CDUM, 1, V1T, LDV1T, U2, LDU2, U1,
- $ LDU1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
- $ RWORK(1), -1, CHILDINFO )
- LBBCSD = INT( RWORK(1) )
- ELSE
- CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
- $ CDUM, CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO
- $ )
- LORBDB = M + INT( WORK(1) )
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL CUNGQR( P, P, M-Q, U1, LDU1, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, P )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGQRMIN = MAX( LORGQRMIN, M-P )
- LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, CDUM, WORK(1), -1,
- $ CHILDINFO )
- LORGLQMIN = MAX( LORGLQMIN, Q )
- LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
- END IF
- CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
- $ THETA, DUM, U2, LDU2, U1, LDU1, CDUM, 1, V1T,
- $ LDV1T, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
- $ RWORK(1), -1, CHILDINFO )
- LBBCSD = INT( RWORK(1) )
- END IF
- LRWORKMIN = IBBCSD+LBBCSD-1
- LRWORKOPT = LRWORKMIN
- RWORK(1) = LRWORKOPT
- LWORKMIN = MAX( IORBDB+LORBDB-1,
- $ IORGQR+LORGQRMIN-1,
- $ IORGLQ+LORGLQMIN-1 )
- LWORKOPT = MAX( IORBDB+LORBDB-1,
- $ IORGQR+LORGQROPT-1,
- $ IORGLQ+LORGLQOPT-1 )
- WORK(1) = LWORKOPT
- IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -19
- END IF
- END IF
- IF( INFO .NE. 0 ) THEN
- CALL XERBLA( 'CUNCSD2BY1', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- LORGQR = LWORK-IORGQR+1
- LORGLQ = LWORK-IORGLQ+1
- *
- * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
- * in which R = MIN(P,M-P,Q,M-Q)
- *
- IF( R .EQ. Q ) THEN
- *
- * Case 1: R = Q
- *
- * Simultaneously bidiagonalize X11 and X21
- *
- CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
- $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
- $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
- *
- * Accumulate Householder reflectors
- *
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
- CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
- $ LORGQR, CHILDINFO )
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
- CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
- $ WORK(IORGQR), LORGQR, CHILDINFO )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- V1T(1,1) = ONE
- DO J = 2, Q
- V1T(1,J) = ZERO
- V1T(J,1) = ZERO
- END DO
- CALL CLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
- $ LDV1T )
- CALL CUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
- $ WORK(IORGLQ), LORGLQ, CHILDINFO )
- END IF
- *
- * Simultaneously diagonalize X11 and X21.
- *
- CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
- $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
- $ 1, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
- $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
- $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
- $ CHILDINFO )
- *
- * Permute rows and columns to place zero submatrices in
- * preferred positions
- *
- IF( Q .GT. 0 .AND. WANTU2 ) THEN
- DO I = 1, Q
- IWORK(I) = M - P - Q + I
- END DO
- DO I = Q + 1, M - P
- IWORK(I) = I - Q
- END DO
- CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
- END IF
- ELSE IF( R .EQ. P ) THEN
- *
- * Case 2: R = P
- *
- * Simultaneously bidiagonalize X11 and X21
- *
- CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
- $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
- $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
- *
- * Accumulate Householder reflectors
- *
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- U1(1,1) = ONE
- DO J = 2, P
- U1(1,J) = ZERO
- U1(J,1) = ZERO
- END DO
- CALL CLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
- CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
- $ WORK(IORGQR), LORGQR, CHILDINFO )
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
- CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
- $ WORK(IORGQR), LORGQR, CHILDINFO )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL CLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
- CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
- $ WORK(IORGLQ), LORGLQ, CHILDINFO )
- END IF
- *
- * Simultaneously diagonalize X11 and X21.
- *
- CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
- $ RWORK(IPHI), V1T, LDV1T, CDUM, 1, U1, LDU1, U2,
- $ LDU2, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
- $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
- $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
- $ CHILDINFO )
- *
- * Permute rows and columns to place identity submatrices in
- * preferred positions
- *
- IF( Q .GT. 0 .AND. WANTU2 ) THEN
- DO I = 1, Q
- IWORK(I) = M - P - Q + I
- END DO
- DO I = Q + 1, M - P
- IWORK(I) = I - Q
- END DO
- CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
- END IF
- ELSE IF( R .EQ. M-P ) THEN
- *
- * Case 3: R = M-P
- *
- * Simultaneously bidiagonalize X11 and X21
- *
- CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
- $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
- $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
- *
- * Accumulate Householder reflectors
- *
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
- CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
- $ LORGQR, CHILDINFO )
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- U2(1,1) = ONE
- DO J = 2, M-P
- U2(1,J) = ZERO
- U2(J,1) = ZERO
- END DO
- CALL CLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
- $ LDU2 )
- CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
- $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL CLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
- CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
- $ WORK(IORGLQ), LORGLQ, CHILDINFO )
- END IF
- *
- * Simultaneously diagonalize X11 and X21.
- *
- CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
- $ THETA, RWORK(IPHI), CDUM, 1, V1T, LDV1T, U2, LDU2,
- $ U1, LDU1, RWORK(IB11D), RWORK(IB11E),
- $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
- $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
- $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
- *
- * Permute rows and columns to place identity submatrices in
- * preferred positions
- *
- IF( Q .GT. R ) THEN
- DO I = 1, R
- IWORK(I) = Q - R + I
- END DO
- DO I = R + 1, Q
- IWORK(I) = I - R
- END DO
- IF( WANTU1 ) THEN
- CALL CLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
- END IF
- IF( WANTV1T ) THEN
- CALL CLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
- END IF
- END IF
- ELSE
- *
- * Case 4: R = M-Q
- *
- * Simultaneously bidiagonalize X11 and X21
- *
- CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
- $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
- $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
- $ LORBDB-M, CHILDINFO )
- *
- * Accumulate Householder reflectors
- *
- IF( WANTU1 .AND. P .GT. 0 ) THEN
- CALL CCOPY( P, WORK(IORBDB), 1, U1, 1 )
- DO J = 2, P
- U1(1,J) = ZERO
- END DO
- CALL CLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
- $ LDU1 )
- CALL CUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
- $ WORK(IORGQR), LORGQR, CHILDINFO )
- END IF
- IF( WANTU2 .AND. M-P .GT. 0 ) THEN
- CALL CCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
- DO J = 2, M-P
- U2(1,J) = ZERO
- END DO
- CALL CLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
- $ LDU2 )
- CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
- $ WORK(IORGQR), LORGQR, CHILDINFO )
- END IF
- IF( WANTV1T .AND. Q .GT. 0 ) THEN
- CALL CLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
- CALL CLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
- $ V1T(M-Q+1,M-Q+1), LDV1T )
- CALL CLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
- $ V1T(P+1,P+1), LDV1T )
- CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
- $ WORK(IORGLQ), LORGLQ, CHILDINFO )
- END IF
- *
- * Simultaneously diagonalize X11 and X21.
- *
- CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
- $ THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, CDUM, 1,
- $ V1T, LDV1T, RWORK(IB11D), RWORK(IB11E),
- $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
- $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
- $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
- *
- * Permute rows and columns to place identity submatrices in
- * preferred positions
- *
- IF( P .GT. R ) THEN
- DO I = 1, R
- IWORK(I) = P - R + I
- END DO
- DO I = R + 1, P
- IWORK(I) = I - R
- END DO
- IF( WANTU1 ) THEN
- CALL CLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
- END IF
- IF( WANTV1T ) THEN
- CALL CLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of CUNCSD2BY1
- *
- END
|