|
- *> \brief \b CUNBDB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CUNBDB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
- * X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
- * TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIGNS, TRANS
- * INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
- * $ Q
- * ..
- * .. Array Arguments ..
- * REAL PHI( * ), THETA( * )
- * COMPLEX TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
- * $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
- * $ X21( LDX21, * ), X22( LDX22, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
- *> partitioned unitary matrix X:
- *>
- *> [ B11 | B12 0 0 ]
- *> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H
- *> X = [-----------] = [---------] [----------------] [---------] .
- *> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
- *> [ 0 | 0 0 I ]
- *>
- *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
- *> not the case, then X must be transposed and/or permuted. This can be
- *> done in constant time using the TRANS and SIGNS options. See CUNCSD
- *> for details.)
- *>
- *> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
- *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
- *> represented implicitly by Householder vectors.
- *>
- *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
- *> implicitly by angles THETA, PHI.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER
- *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
- *> order;
- *> otherwise: X, U1, U2, V1T, and V2T are stored in column-
- *> major order.
- *> \endverbatim
- *>
- *> \param[in] SIGNS
- *> \verbatim
- *> SIGNS is CHARACTER
- *> = 'O': The lower-left block is made nonpositive (the
- *> "other" convention);
- *> otherwise: The upper-right block is made nonpositive (the
- *> "default" convention).
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows and columns in X.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows in X11 and X12. 0 <= P <= M.
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is INTEGER
- *> The number of columns in X11 and X21. 0 <= Q <=
- *> MIN(P,M-P,M-Q).
- *> \endverbatim
- *>
- *> \param[in,out] X11
- *> \verbatim
- *> X11 is COMPLEX array, dimension (LDX11,Q)
- *> On entry, the top-left block of the unitary matrix to be
- *> reduced. On exit, the form depends on TRANS:
- *> If TRANS = 'N', then
- *> the columns of tril(X11) specify reflectors for P1,
- *> the rows of triu(X11,1) specify reflectors for Q1;
- *> else TRANS = 'T', and
- *> the rows of triu(X11) specify reflectors for P1,
- *> the columns of tril(X11,-1) specify reflectors for Q1.
- *> \endverbatim
- *>
- *> \param[in] LDX11
- *> \verbatim
- *> LDX11 is INTEGER
- *> The leading dimension of X11. If TRANS = 'N', then LDX11 >=
- *> P; else LDX11 >= Q.
- *> \endverbatim
- *>
- *> \param[in,out] X12
- *> \verbatim
- *> X12 is COMPLEX array, dimension (LDX12,M-Q)
- *> On entry, the top-right block of the unitary matrix to
- *> be reduced. On exit, the form depends on TRANS:
- *> If TRANS = 'N', then
- *> the rows of triu(X12) specify the first P reflectors for
- *> Q2;
- *> else TRANS = 'T', and
- *> the columns of tril(X12) specify the first P reflectors
- *> for Q2.
- *> \endverbatim
- *>
- *> \param[in] LDX12
- *> \verbatim
- *> LDX12 is INTEGER
- *> The leading dimension of X12. If TRANS = 'N', then LDX12 >=
- *> P; else LDX11 >= M-Q.
- *> \endverbatim
- *>
- *> \param[in,out] X21
- *> \verbatim
- *> X21 is COMPLEX array, dimension (LDX21,Q)
- *> On entry, the bottom-left block of the unitary matrix to
- *> be reduced. On exit, the form depends on TRANS:
- *> If TRANS = 'N', then
- *> the columns of tril(X21) specify reflectors for P2;
- *> else TRANS = 'T', and
- *> the rows of triu(X21) specify reflectors for P2.
- *> \endverbatim
- *>
- *> \param[in] LDX21
- *> \verbatim
- *> LDX21 is INTEGER
- *> The leading dimension of X21. If TRANS = 'N', then LDX21 >=
- *> M-P; else LDX21 >= Q.
- *> \endverbatim
- *>
- *> \param[in,out] X22
- *> \verbatim
- *> X22 is COMPLEX array, dimension (LDX22,M-Q)
- *> On entry, the bottom-right block of the unitary matrix to
- *> be reduced. On exit, the form depends on TRANS:
- *> If TRANS = 'N', then
- *> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
- *> M-P-Q reflectors for Q2,
- *> else TRANS = 'T', and
- *> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
- *> M-P-Q reflectors for P2.
- *> \endverbatim
- *>
- *> \param[in] LDX22
- *> \verbatim
- *> LDX22 is INTEGER
- *> The leading dimension of X22. If TRANS = 'N', then LDX22 >=
- *> M-P; else LDX22 >= M-Q.
- *> \endverbatim
- *>
- *> \param[out] THETA
- *> \verbatim
- *> THETA is REAL array, dimension (Q)
- *> The entries of the bidiagonal blocks B11, B12, B21, B22 can
- *> be computed from the angles THETA and PHI. See Further
- *> Details.
- *> \endverbatim
- *>
- *> \param[out] PHI
- *> \verbatim
- *> PHI is REAL array, dimension (Q-1)
- *> The entries of the bidiagonal blocks B11, B12, B21, B22 can
- *> be computed from the angles THETA and PHI. See Further
- *> Details.
- *> \endverbatim
- *>
- *> \param[out] TAUP1
- *> \verbatim
- *> TAUP1 is COMPLEX array, dimension (P)
- *> The scalar factors of the elementary reflectors that define
- *> P1.
- *> \endverbatim
- *>
- *> \param[out] TAUP2
- *> \verbatim
- *> TAUP2 is COMPLEX array, dimension (M-P)
- *> The scalar factors of the elementary reflectors that define
- *> P2.
- *> \endverbatim
- *>
- *> \param[out] TAUQ1
- *> \verbatim
- *> TAUQ1 is COMPLEX array, dimension (Q)
- *> The scalar factors of the elementary reflectors that define
- *> Q1.
- *> \endverbatim
- *>
- *> \param[out] TAUQ2
- *> \verbatim
- *> TAUQ2 is COMPLEX array, dimension (M-Q)
- *> The scalar factors of the elementary reflectors that define
- *> Q2.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= M-Q.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The bidiagonal blocks B11, B12, B21, and B22 are represented
- *> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
- *> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
- *> lower bidiagonal. Every entry in each bidiagonal band is a product
- *> of a sine or cosine of a THETA with a sine or cosine of a PHI. See
- *> [1] or CUNCSD for details.
- *>
- *> P1, P2, Q1, and Q2 are represented as products of elementary
- *> reflectors. See CUNCSD for details on generating P1, P2, Q1, and Q2
- *> using CUNGQR and CUNGLQ.
- *> \endverbatim
- *
- *> \par References:
- * ================
- *>
- *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
- *> Algorithms, 50(1):33-65, 2009.
- *>
- * =====================================================================
- SUBROUTINE CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
- $ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
- $ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER SIGNS, TRANS
- INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
- $ Q
- * ..
- * .. Array Arguments ..
- REAL PHI( * ), THETA( * )
- COMPLEX TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
- $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
- $ X21( LDX21, * ), X22( LDX22, * )
- * ..
- *
- * ====================================================================
- *
- * .. Parameters ..
- REAL REALONE
- PARAMETER ( REALONE = 1.0E0 )
- COMPLEX ONE
- PARAMETER ( ONE = (1.0E0,0.0E0) )
- * ..
- * .. Local Scalars ..
- LOGICAL COLMAJOR, LQUERY
- INTEGER I, LWORKMIN, LWORKOPT
- REAL Z1, Z2, Z3, Z4
- * ..
- * .. External Subroutines ..
- EXTERNAL CAXPY, CLARF, CLARFGP, CSCAL, XERBLA
- EXTERNAL CLACGV
- *
- * ..
- * .. External Functions ..
- REAL SCNRM2
- LOGICAL LSAME
- EXTERNAL SCNRM2, LSAME
- * ..
- * .. Intrinsic Functions
- INTRINSIC ATAN2, COS, MAX, MIN, SIN
- INTRINSIC CMPLX, CONJG
- * ..
- * .. Executable Statements ..
- *
- * Test input arguments
- *
- INFO = 0
- COLMAJOR = .NOT. LSAME( TRANS, 'T' )
- IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
- Z1 = REALONE
- Z2 = REALONE
- Z3 = REALONE
- Z4 = REALONE
- ELSE
- Z1 = REALONE
- Z2 = -REALONE
- Z3 = REALONE
- Z4 = -REALONE
- END IF
- LQUERY = LWORK .EQ. -1
- *
- IF( M .LT. 0 ) THEN
- INFO = -3
- ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
- INFO = -4
- ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
- $ Q .GT. M-Q ) THEN
- INFO = -5
- ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
- INFO = -7
- ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
- INFO = -7
- ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
- INFO = -9
- ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
- INFO = -9
- ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
- INFO = -11
- ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
- INFO = -11
- ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
- INFO = -13
- ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
- INFO = -13
- END IF
- *
- * Compute workspace
- *
- IF( INFO .EQ. 0 ) THEN
- LWORKOPT = M - Q
- LWORKMIN = M - Q
- WORK(1) = LWORKOPT
- IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
- INFO = -21
- END IF
- END IF
- IF( INFO .NE. 0 ) THEN
- CALL XERBLA( 'xORBDB', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Handle column-major and row-major separately
- *
- IF( COLMAJOR ) THEN
- *
- * Reduce columns 1, ..., Q of X11, X12, X21, and X22
- *
- DO I = 1, Q
- *
- IF( I .EQ. 1 ) THEN
- CALL CSCAL( P-I+1, CMPLX( Z1, 0.0E0 ), X11(I,I), 1 )
- ELSE
- CALL CSCAL( P-I+1, CMPLX( Z1*COS(PHI(I-1)), 0.0E0 ),
- $ X11(I,I), 1 )
- CALL CAXPY( P-I+1, CMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
- $ 0.0E0 ), X12(I,I-1), 1, X11(I,I), 1 )
- END IF
- IF( I .EQ. 1 ) THEN
- CALL CSCAL( M-P-I+1, CMPLX( Z2, 0.0E0 ), X21(I,I), 1 )
- ELSE
- CALL CSCAL( M-P-I+1, CMPLX( Z2*COS(PHI(I-1)), 0.0E0 ),
- $ X21(I,I), 1 )
- CALL CAXPY( M-P-I+1, CMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
- $ 0.0E0 ), X22(I,I-1), 1, X21(I,I), 1 )
- END IF
- *
- THETA(I) = ATAN2( SCNRM2( M-P-I+1, X21(I,I), 1 ),
- $ SCNRM2( P-I+1, X11(I,I), 1 ) )
- *
- IF( P .GT. I ) THEN
- CALL CLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
- ELSE IF ( P .EQ. I ) THEN
- CALL CLARFGP( P-I+1, X11(I,I), X11(I,I), 1, TAUP1(I) )
- END IF
- X11(I,I) = ONE
- IF ( M-P .GT. I ) THEN
- CALL CLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1,
- $ TAUP2(I) )
- ELSE IF ( M-P .EQ. I ) THEN
- CALL CLARFGP( M-P-I+1, X21(I,I), X21(I,I), 1,
- $ TAUP2(I) )
- END IF
- X21(I,I) = ONE
- *
- IF ( Q .GT. I ) THEN
- CALL CLARF( 'L', P-I+1, Q-I, X11(I,I), 1,
- $ CONJG(TAUP1(I)), X11(I,I+1), LDX11, WORK )
- CALL CLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
- $ CONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
- END IF
- IF ( M-Q+1 .GT. I ) THEN
- CALL CLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
- $ CONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
- CALL CLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
- $ CONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
- END IF
- *
- IF( I .LT. Q ) THEN
- CALL CSCAL( Q-I, CMPLX( -Z1*Z3*SIN(THETA(I)), 0.0E0 ),
- $ X11(I,I+1), LDX11 )
- CALL CAXPY( Q-I, CMPLX( Z2*Z3*COS(THETA(I)), 0.0E0 ),
- $ X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
- END IF
- CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4*SIN(THETA(I)), 0.0E0 ),
- $ X12(I,I), LDX12 )
- CALL CAXPY( M-Q-I+1, CMPLX( Z2*Z4*COS(THETA(I)), 0.0E0 ),
- $ X22(I,I), LDX22, X12(I,I), LDX12 )
- *
- IF( I .LT. Q )
- $ PHI(I) = ATAN2( SCNRM2( Q-I, X11(I,I+1), LDX11 ),
- $ SCNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
- *
- IF( I .LT. Q ) THEN
- CALL CLACGV( Q-I, X11(I,I+1), LDX11 )
- IF ( I .EQ. Q-1 ) THEN
- CALL CLARFGP( Q-I, X11(I,I+1), X11(I,I+1), LDX11,
- $ TAUQ1(I) )
- ELSE
- CALL CLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
- $ TAUQ1(I) )
- END IF
- X11(I,I+1) = ONE
- END IF
- IF ( M-Q+1 .GT. I ) THEN
- CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
- IF ( M-Q .EQ. I ) THEN
- CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
- $ TAUQ2(I) )
- ELSE
- CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
- $ TAUQ2(I) )
- END IF
- END IF
- X12(I,I) = ONE
- *
- IF( I .LT. Q ) THEN
- CALL CLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
- $ X11(I+1,I+1), LDX11, WORK )
- CALL CLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
- $ X21(I+1,I+1), LDX21, WORK )
- END IF
- IF ( P .GT. I ) THEN
- CALL CLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
- $ X12(I+1,I), LDX12, WORK )
- END IF
- IF ( M-P .GT. I ) THEN
- CALL CLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12,
- $ TAUQ2(I), X22(I+1,I), LDX22, WORK )
- END IF
- *
- IF( I .LT. Q )
- $ CALL CLACGV( Q-I, X11(I,I+1), LDX11 )
- CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
- *
- END DO
- *
- * Reduce columns Q + 1, ..., P of X12, X22
- *
- DO I = Q + 1, P
- *
- CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4, 0.0E0 ), X12(I,I),
- $ LDX12 )
- CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
- IF ( I .GE. M-Q ) THEN
- CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
- $ TAUQ2(I) )
- ELSE
- CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
- $ TAUQ2(I) )
- END IF
- X12(I,I) = ONE
- *
- IF ( P .GT. I ) THEN
- CALL CLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
- $ X12(I+1,I), LDX12, WORK )
- END IF
- IF( M-P-Q .GE. 1 )
- $ CALL CLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
- $ TAUQ2(I), X22(Q+1,I), LDX22, WORK )
- *
- CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
- *
- END DO
- *
- * Reduce columns P + 1, ..., M - Q of X12, X22
- *
- DO I = 1, M - P - Q
- *
- CALL CSCAL( M-P-Q-I+1, CMPLX( Z2*Z4, 0.0E0 ),
- $ X22(Q+I,P+I), LDX22 )
- CALL CLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
- CALL CLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
- $ LDX22, TAUQ2(P+I) )
- X22(Q+I,P+I) = ONE
- CALL CLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
- $ TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
- *
- CALL CLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
- *
- END DO
- *
- ELSE
- *
- * Reduce columns 1, ..., Q of X11, X12, X21, X22
- *
- DO I = 1, Q
- *
- IF( I .EQ. 1 ) THEN
- CALL CSCAL( P-I+1, CMPLX( Z1, 0.0E0 ), X11(I,I),
- $ LDX11 )
- ELSE
- CALL CSCAL( P-I+1, CMPLX( Z1*COS(PHI(I-1)), 0.0E0 ),
- $ X11(I,I), LDX11 )
- CALL CAXPY( P-I+1, CMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
- $ 0.0E0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
- END IF
- IF( I .EQ. 1 ) THEN
- CALL CSCAL( M-P-I+1, CMPLX( Z2, 0.0E0 ), X21(I,I),
- $ LDX21 )
- ELSE
- CALL CSCAL( M-P-I+1, CMPLX( Z2*COS(PHI(I-1)), 0.0E0 ),
- $ X21(I,I), LDX21 )
- CALL CAXPY( M-P-I+1, CMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
- $ 0.0E0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
- END IF
- *
- THETA(I) = ATAN2( SCNRM2( M-P-I+1, X21(I,I), LDX21 ),
- $ SCNRM2( P-I+1, X11(I,I), LDX11 ) )
- *
- CALL CLACGV( P-I+1, X11(I,I), LDX11 )
- CALL CLACGV( M-P-I+1, X21(I,I), LDX21 )
- *
- CALL CLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
- X11(I,I) = ONE
- IF ( I .EQ. M-P ) THEN
- CALL CLARFGP( M-P-I+1, X21(I,I), X21(I,I), LDX21,
- $ TAUP2(I) )
- ELSE
- CALL CLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
- $ TAUP2(I) )
- END IF
- X21(I,I) = ONE
- *
- CALL CLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
- $ X11(I+1,I), LDX11, WORK )
- CALL CLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
- $ X12(I,I), LDX12, WORK )
- CALL CLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
- $ X21(I+1,I), LDX21, WORK )
- CALL CLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
- $ TAUP2(I), X22(I,I), LDX22, WORK )
- *
- CALL CLACGV( P-I+1, X11(I,I), LDX11 )
- CALL CLACGV( M-P-I+1, X21(I,I), LDX21 )
- *
- IF( I .LT. Q ) THEN
- CALL CSCAL( Q-I, CMPLX( -Z1*Z3*SIN(THETA(I)), 0.0E0 ),
- $ X11(I+1,I), 1 )
- CALL CAXPY( Q-I, CMPLX( Z2*Z3*COS(THETA(I)), 0.0E0 ),
- $ X21(I+1,I), 1, X11(I+1,I), 1 )
- END IF
- CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4*SIN(THETA(I)), 0.0E0 ),
- $ X12(I,I), 1 )
- CALL CAXPY( M-Q-I+1, CMPLX( Z2*Z4*COS(THETA(I)), 0.0E0 ),
- $ X22(I,I), 1, X12(I,I), 1 )
- *
- IF( I .LT. Q )
- $ PHI(I) = ATAN2( SCNRM2( Q-I, X11(I+1,I), 1 ),
- $ SCNRM2( M-Q-I+1, X12(I,I), 1 ) )
- *
- IF( I .LT. Q ) THEN
- CALL CLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
- X11(I+1,I) = ONE
- END IF
- CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
- X12(I,I) = ONE
- *
- IF( I .LT. Q ) THEN
- CALL CLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
- $ CONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
- CALL CLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
- $ CONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
- END IF
- CALL CLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, CONJG(TAUQ2(I)),
- $ X12(I,I+1), LDX12, WORK )
-
- IF ( M-P .GT. I ) THEN
- CALL CLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
- $ CONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
- END IF
- END DO
- *
- * Reduce columns Q + 1, ..., P of X12, X22
- *
- DO I = Q + 1, P
- *
- CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4, 0.0E0 ), X12(I,I), 1 )
- CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
- X12(I,I) = ONE
- *
- IF ( P .GT. I ) THEN
- CALL CLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
- $ CONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
- END IF
- IF( M-P-Q .GE. 1 )
- $ CALL CLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
- $ CONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
- *
- END DO
- *
- * Reduce columns P + 1, ..., M - Q of X12, X22
- *
- DO I = 1, M - P - Q
- *
- CALL CSCAL( M-P-Q-I+1, CMPLX( Z2*Z4, 0.0E0 ),
- $ X22(P+I,Q+I), 1 )
- CALL CLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
- $ TAUQ2(P+I) )
- X22(P+I,Q+I) = ONE
- IF ( M-P-Q .NE. I ) THEN
- CALL CLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
- $ CONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
- $ WORK )
- END IF
- END DO
- *
- END IF
- *
- RETURN
- *
- * End of CUNBDB
- *
- END
|