|
- *> \brief \b CSTEMR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CSTEMR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cstemr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cstemr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cstemr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
- * M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
- * IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE
- * LOGICAL TRYRAC
- * INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
- * REAL VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER ISUPPZ( * ), IWORK( * )
- * REAL D( * ), E( * ), W( * ), WORK( * )
- * COMPLEX Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CSTEMR computes selected eigenvalues and, optionally, eigenvectors
- *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
- *> a well defined set of pairwise different real eigenvalues, the corresponding
- *> real eigenvectors are pairwise orthogonal.
- *>
- *> The spectrum may be computed either completely or partially by specifying
- *> either an interval (VL,VU] or a range of indices IL:IU for the desired
- *> eigenvalues.
- *>
- *> Depending on the number of desired eigenvalues, these are computed either
- *> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
- *> computed by the use of various suitable L D L^T factorizations near clusters
- *> of close eigenvalues (referred to as RRRs, Relatively Robust
- *> Representations). An informal sketch of the algorithm follows.
- *>
- *> For each unreduced block (submatrix) of T,
- *> (a) Compute T - sigma I = L D L^T, so that L and D
- *> define all the wanted eigenvalues to high relative accuracy.
- *> This means that small relative changes in the entries of D and L
- *> cause only small relative changes in the eigenvalues and
- *> eigenvectors. The standard (unfactored) representation of the
- *> tridiagonal matrix T does not have this property in general.
- *> (b) Compute the eigenvalues to suitable accuracy.
- *> If the eigenvectors are desired, the algorithm attains full
- *> accuracy of the computed eigenvalues only right before
- *> the corresponding vectors have to be computed, see steps c) and d).
- *> (c) For each cluster of close eigenvalues, select a new
- *> shift close to the cluster, find a new factorization, and refine
- *> the shifted eigenvalues to suitable accuracy.
- *> (d) For each eigenvalue with a large enough relative separation compute
- *> the corresponding eigenvector by forming a rank revealing twisted
- *> factorization. Go back to (c) for any clusters that remain.
- *>
- *> For more details, see:
- *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
- *> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
- *> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
- *> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
- *> 2004. Also LAPACK Working Note 154.
- *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
- *> tridiagonal eigenvalue/eigenvector problem",
- *> Computer Science Division Technical Report No. UCB/CSD-97-971,
- *> UC Berkeley, May 1997.
- *>
- *> Further Details
- *> 1.CSTEMR works only on machines which follow IEEE-754
- *> floating-point standard in their handling of infinities and NaNs.
- *> This permits the use of efficient inner loops avoiding a check for
- *> zero divisors.
- *>
- *> 2. LAPACK routines can be used to reduce a complex Hermitean matrix to
- *> real symmetric tridiagonal form.
- *>
- *> (Any complex Hermitean tridiagonal matrix has real values on its diagonal
- *> and potentially complex numbers on its off-diagonals. By applying a
- *> similarity transform with an appropriate diagonal matrix
- *> diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
- *> matrix can be transformed into a real symmetric matrix and complex
- *> arithmetic can be entirely avoided.)
- *>
- *> While the eigenvectors of the real symmetric tridiagonal matrix are real,
- *> the eigenvectors of original complex Hermitean matrix have complex entries
- *> in general.
- *> Since LAPACK drivers overwrite the matrix data with the eigenvectors,
- *> CSTEMR accepts complex workspace to facilitate interoperability
- *> with CUNMTR or CUPMTR.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found.
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found.
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, the N diagonal elements of the tridiagonal matrix
- *> T. On exit, D is overwritten.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (N)
- *> On entry, the (N-1) subdiagonal elements of the tridiagonal
- *> matrix T in elements 1 to N-1 of E. E(N) need not be set on
- *> input, but is used internally as workspace.
- *> On exit, E is overwritten.
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is REAL
- *>
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is REAL
- *>
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *>
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *>
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> The first M elements contain the selected eigenvalues in
- *> ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ, max(1,M) )
- *> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix T
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> If JOBZ = 'N', then Z is not referenced.
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and can be computed with a workspace
- *> query by setting NZC = -1, see below.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', then LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] NZC
- *> \verbatim
- *> NZC is INTEGER
- *> The number of eigenvectors to be held in the array Z.
- *> If RANGE = 'A', then NZC >= max(1,N).
- *> If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
- *> If RANGE = 'I', then NZC >= IU-IL+1.
- *> If NZC = -1, then a workspace query is assumed; the
- *> routine calculates the number of columns of the array Z that
- *> are needed to hold the eigenvectors.
- *> This value is returned as the first entry of the Z array, and
- *> no error message related to NZC is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] ISUPPZ
- *> \verbatim
- *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
- *> The support of the eigenvectors in Z, i.e., the indices
- *> indicating the nonzero elements in Z. The i-th computed eigenvector
- *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
- *> ISUPPZ( 2*i ). This is relevant in the case when the matrix
- *> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
- *> \endverbatim
- *>
- *> \param[in,out] TRYRAC
- *> \verbatim
- *> TRYRAC is LOGICAL
- *> If TRYRAC = .TRUE., indicates that the code should check whether
- *> the tridiagonal matrix defines its eigenvalues to high relative
- *> accuracy. If so, the code uses relative-accuracy preserving
- *> algorithms that might be (a bit) slower depending on the matrix.
- *> If the matrix does not define its eigenvalues to high relative
- *> accuracy, the code can uses possibly faster algorithms.
- *> If TRYRAC = .FALSE., the code is not required to guarantee
- *> relatively accurate eigenvalues and can use the fastest possible
- *> techniques.
- *> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
- *> does not define its eigenvalues to high relative accuracy.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> On exit, if INFO = 0, WORK(1) returns the optimal
- *> (and minimal) LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,18*N)
- *> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (LIWORK)
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK. LIWORK >= max(1,10*N)
- *> if the eigenvectors are desired, and LIWORK >= max(1,8*N)
- *> if only the eigenvalues are to be computed.
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal size of the IWORK array,
- *> returns this value as the first entry of the IWORK array, and
- *> no error message related to LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> On exit, INFO
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = 1X, internal error in SLARRE,
- *> if INFO = 2X, internal error in CLARRV.
- *> Here, the digit X = ABS( IINFO ) < 10, where IINFO is
- *> the nonzero error code returned by SLARRE or
- *> CLARRV, respectively.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Beresford Parlett, University of California, Berkeley, USA \n
- *> Jim Demmel, University of California, Berkeley, USA \n
- *> Inderjit Dhillon, University of Texas, Austin, USA \n
- *> Osni Marques, LBNL/NERSC, USA \n
- *> Christof Voemel, University of California, Berkeley, USA
- *
- * =====================================================================
- SUBROUTINE CSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
- $ M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
- $ IWORK, LIWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE
- LOGICAL TRYRAC
- INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
- REAL VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER ISUPPZ( * ), IWORK( * )
- REAL D( * ), E( * ), W( * ), WORK( * )
- COMPLEX Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, FOUR, MINRGP
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0,
- $ FOUR = 4.0E0,
- $ MINRGP = 3.0E-3 )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
- INTEGER I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
- $ IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
- $ INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
- $ ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
- $ NZCMIN, OFFSET, WBEGIN, WEND
- REAL BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
- $ RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
- $ THRESH, TMP, TNRM, WL, WU
- * ..
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANST
- EXTERNAL LSAME, SLAMCH, SLANST
- * ..
- * .. External Subroutines ..
- EXTERNAL CLARRV, CSWAP, SCOPY, SLAE2, SLAEV2, SLARRC,
- $ SLARRE, SLARRJ, SLARRR, SLASRT, SSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
-
-
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- *
- LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
- ZQUERY = ( NZC.EQ.-1 )
-
- * SSTEMR needs WORK of size 6*N, IWORK of size 3*N.
- * In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N.
- * Furthermore, CLARRV needs WORK of size 12*N, IWORK of size 7*N.
- IF( WANTZ ) THEN
- LWMIN = 18*N
- LIWMIN = 10*N
- ELSE
- * need less workspace if only the eigenvalues are wanted
- LWMIN = 12*N
- LIWMIN = 8*N
- ENDIF
-
- WL = ZERO
- WU = ZERO
- IIL = 0
- IIU = 0
- NSPLIT = 0
-
- IF( VALEIG ) THEN
- * We do not reference VL, VU in the cases RANGE = 'I','A'
- * The interval (WL, WU] contains all the wanted eigenvalues.
- * It is either given by the user or computed in SLARRE.
- WL = VL
- WU = VU
- ELSEIF( INDEIG ) THEN
- * We do not reference IL, IU in the cases RANGE = 'V','A'
- IIL = IL
- IIU = IU
- ENDIF
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
- INFO = -7
- ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
- INFO = -8
- ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
- INFO = -9
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -13
- ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -17
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -19
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = SLAMCH( 'Safe minimum' )
- EPS = SLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( WANTZ .AND. ALLEIG ) THEN
- NZCMIN = N
- ELSE IF( WANTZ .AND. VALEIG ) THEN
- CALL SLARRC( 'T', N, VL, VU, D, E, SAFMIN,
- $ NZCMIN, ITMP, ITMP2, INFO )
- ELSE IF( WANTZ .AND. INDEIG ) THEN
- NZCMIN = IIU-IIL+1
- ELSE
- * WANTZ .EQ. FALSE.
- NZCMIN = 0
- ENDIF
- IF( ZQUERY .AND. INFO.EQ.0 ) THEN
- Z( 1,1 ) = NZCMIN
- ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
- INFO = -14
- END IF
- END IF
-
- IF( INFO.NE.0 ) THEN
- *
- CALL XERBLA( 'CSTEMR', -INFO )
- *
- RETURN
- ELSE IF( LQUERY .OR. ZQUERY ) THEN
- RETURN
- END IF
- *
- * Handle N = 0, 1, and 2 cases immediately
- *
- M = 0
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- IF( ALLEIG .OR. INDEIG ) THEN
- M = 1
- W( 1 ) = D( 1 )
- ELSE
- IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
- M = 1
- W( 1 ) = D( 1 )
- END IF
- END IF
- IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
- Z( 1, 1 ) = ONE
- ISUPPZ(1) = 1
- ISUPPZ(2) = 1
- END IF
- RETURN
- END IF
- *
- IF( N.EQ.2 ) THEN
- IF( .NOT.WANTZ ) THEN
- CALL SLAE2( D(1), E(1), D(2), R1, R2 )
- ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
- CALL SLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
- END IF
- IF( ALLEIG.OR.
- $ (VALEIG.AND.(R2.GT.WL).AND.
- $ (R2.LE.WU)).OR.
- $ (INDEIG.AND.(IIL.EQ.1)) ) THEN
- M = M+1
- W( M ) = R2
- IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
- Z( 1, M ) = -SN
- Z( 2, M ) = CS
- * Note: At most one of SN and CS can be zero.
- IF (SN.NE.ZERO) THEN
- IF (CS.NE.ZERO) THEN
- ISUPPZ(2*M-1) = 1
- ISUPPZ(2*M) = 2
- ELSE
- ISUPPZ(2*M-1) = 1
- ISUPPZ(2*M) = 1
- END IF
- ELSE
- ISUPPZ(2*M-1) = 2
- ISUPPZ(2*M) = 2
- END IF
- ENDIF
- ENDIF
- IF( ALLEIG.OR.
- $ (VALEIG.AND.(R1.GT.WL).AND.
- $ (R1.LE.WU)).OR.
- $ (INDEIG.AND.(IIU.EQ.2)) ) THEN
- M = M+1
- W( M ) = R1
- IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
- Z( 1, M ) = CS
- Z( 2, M ) = SN
- * Note: At most one of SN and CS can be zero.
- IF (SN.NE.ZERO) THEN
- IF (CS.NE.ZERO) THEN
- ISUPPZ(2*M-1) = 1
- ISUPPZ(2*M) = 2
- ELSE
- ISUPPZ(2*M-1) = 1
- ISUPPZ(2*M) = 1
- END IF
- ELSE
- ISUPPZ(2*M-1) = 2
- ISUPPZ(2*M) = 2
- END IF
- ENDIF
- ENDIF
- ELSE
-
- * Continue with general N
-
- INDGRS = 1
- INDERR = 2*N + 1
- INDGP = 3*N + 1
- INDD = 4*N + 1
- INDE2 = 5*N + 1
- INDWRK = 6*N + 1
- *
- IINSPL = 1
- IINDBL = N + 1
- IINDW = 2*N + 1
- IINDWK = 3*N + 1
- *
- * Scale matrix to allowable range, if necessary.
- * The allowable range is related to the PIVMIN parameter; see the
- * comments in SLARRD. The preference for scaling small values
- * up is heuristic; we expect users' matrices not to be close to the
- * RMAX threshold.
- *
- SCALE = ONE
- TNRM = SLANST( 'M', N, D, E )
- IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
- SCALE = RMIN / TNRM
- ELSE IF( TNRM.GT.RMAX ) THEN
- SCALE = RMAX / TNRM
- END IF
- IF( SCALE.NE.ONE ) THEN
- CALL SSCAL( N, SCALE, D, 1 )
- CALL SSCAL( N-1, SCALE, E, 1 )
- TNRM = TNRM*SCALE
- IF( VALEIG ) THEN
- * If eigenvalues in interval have to be found,
- * scale (WL, WU] accordingly
- WL = WL*SCALE
- WU = WU*SCALE
- ENDIF
- END IF
- *
- * Compute the desired eigenvalues of the tridiagonal after splitting
- * into smaller subblocks if the corresponding off-diagonal elements
- * are small
- * THRESH is the splitting parameter for SLARRE
- * A negative THRESH forces the old splitting criterion based on the
- * size of the off-diagonal. A positive THRESH switches to splitting
- * which preserves relative accuracy.
- *
- IF( TRYRAC ) THEN
- * Test whether the matrix warrants the more expensive relative approach.
- CALL SLARRR( N, D, E, IINFO )
- ELSE
- * The user does not care about relative accurately eigenvalues
- IINFO = -1
- ENDIF
- * Set the splitting criterion
- IF (IINFO.EQ.0) THEN
- THRESH = EPS
- ELSE
- THRESH = -EPS
- * relative accuracy is desired but T does not guarantee it
- TRYRAC = .FALSE.
- ENDIF
- *
- IF( TRYRAC ) THEN
- * Copy original diagonal, needed to guarantee relative accuracy
- CALL SCOPY(N,D,1,WORK(INDD),1)
- ENDIF
- * Store the squares of the offdiagonal values of T
- DO 5 J = 1, N-1
- WORK( INDE2+J-1 ) = E(J)**2
- 5 CONTINUE
-
- * Set the tolerance parameters for bisection
- IF( .NOT.WANTZ ) THEN
- * SLARRE computes the eigenvalues to full precision.
- RTOL1 = FOUR * EPS
- RTOL2 = FOUR * EPS
- ELSE
- * SLARRE computes the eigenvalues to less than full precision.
- * CLARRV will refine the eigenvalue approximations, and we only
- * need less accurate initial bisection in SLARRE.
- * Note: these settings do only affect the subset case and SLARRE
- RTOL1 = MAX( SQRT(EPS)*5.0E-2, FOUR * EPS )
- RTOL2 = MAX( SQRT(EPS)*5.0E-3, FOUR * EPS )
- ENDIF
- CALL SLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
- $ WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
- $ IWORK( IINSPL ), M, W, WORK( INDERR ),
- $ WORK( INDGP ), IWORK( IINDBL ),
- $ IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
- $ WORK( INDWRK ), IWORK( IINDWK ), IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = 10 + ABS( IINFO )
- RETURN
- END IF
- * Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired
- * part of the spectrum. All desired eigenvalues are contained in
- * (WL,WU]
-
-
- IF( WANTZ ) THEN
- *
- * Compute the desired eigenvectors corresponding to the computed
- * eigenvalues
- *
- CALL CLARRV( N, WL, WU, D, E,
- $ PIVMIN, IWORK( IINSPL ), M,
- $ 1, M, MINRGP, RTOL1, RTOL2,
- $ W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
- $ IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
- $ ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = 20 + ABS( IINFO )
- RETURN
- END IF
- ELSE
- * SLARRE computes eigenvalues of the (shifted) root representation
- * CLARRV returns the eigenvalues of the unshifted matrix.
- * However, if the eigenvectors are not desired by the user, we need
- * to apply the corresponding shifts from SLARRE to obtain the
- * eigenvalues of the original matrix.
- DO 20 J = 1, M
- ITMP = IWORK( IINDBL+J-1 )
- W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
- 20 CONTINUE
- END IF
- *
-
- IF ( TRYRAC ) THEN
- * Refine computed eigenvalues so that they are relatively accurate
- * with respect to the original matrix T.
- IBEGIN = 1
- WBEGIN = 1
- DO 39 JBLK = 1, IWORK( IINDBL+M-1 )
- IEND = IWORK( IINSPL+JBLK-1 )
- IN = IEND - IBEGIN + 1
- WEND = WBEGIN - 1
- * check if any eigenvalues have to be refined in this block
- 36 CONTINUE
- IF( WEND.LT.M ) THEN
- IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
- WEND = WEND + 1
- GO TO 36
- END IF
- END IF
- IF( WEND.LT.WBEGIN ) THEN
- IBEGIN = IEND + 1
- GO TO 39
- END IF
-
- OFFSET = IWORK(IINDW+WBEGIN-1)-1
- IFIRST = IWORK(IINDW+WBEGIN-1)
- ILAST = IWORK(IINDW+WEND-1)
- RTOL2 = FOUR * EPS
- CALL SLARRJ( IN,
- $ WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
- $ IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
- $ WORK( INDERR+WBEGIN-1 ),
- $ WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
- $ TNRM, IINFO )
- IBEGIN = IEND + 1
- WBEGIN = WEND + 1
- 39 CONTINUE
- ENDIF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- IF( SCALE.NE.ONE ) THEN
- CALL SSCAL( M, ONE / SCALE, W, 1 )
- END IF
- END IF
- *
- * If eigenvalues are not in increasing order, then sort them,
- * possibly along with eigenvectors.
- *
- IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN
- IF( .NOT. WANTZ ) THEN
- CALL SLASRT( 'I', M, W, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = 3
- RETURN
- END IF
- ELSE
- DO 60 J = 1, M - 1
- I = 0
- TMP = W( J )
- DO 50 JJ = J + 1, M
- IF( W( JJ ).LT.TMP ) THEN
- I = JJ
- TMP = W( JJ )
- END IF
- 50 CONTINUE
- IF( I.NE.0 ) THEN
- W( I ) = W( J )
- W( J ) = TMP
- IF( WANTZ ) THEN
- CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
- ITMP = ISUPPZ( 2*I-1 )
- ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
- ISUPPZ( 2*J-1 ) = ITMP
- ITMP = ISUPPZ( 2*I )
- ISUPPZ( 2*I ) = ISUPPZ( 2*J )
- ISUPPZ( 2*J ) = ITMP
- END IF
- END IF
- 60 CONTINUE
- END IF
- ENDIF
- *
- *
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- RETURN
- *
- * End of CSTEMR
- *
- END
|