|
- *> \brief <b> CPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CPOSVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cposvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cposvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cposvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
- * S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
- * RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER EQUED, FACT, UPLO
- * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
- * REAL RCOND
- * ..
- * .. Array Arguments ..
- * REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
- * COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- * $ WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
- *> compute the solution to a complex system of linear equations
- *> A * X = B,
- *> where A is an N-by-N Hermitian positive definite matrix and X and B
- *> are N-by-NRHS matrices.
- *>
- *> Error bounds on the solution and a condition estimate are also
- *> provided.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
- *> the system:
- *> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
- *> Whether or not the system will be equilibrated depends on the
- *> scaling of the matrix A, but if equilibration is used, A is
- *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
- *>
- *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
- *> factor the matrix A (after equilibration if FACT = 'E') as
- *> A = U**H* U, if UPLO = 'U', or
- *> A = L * L**H, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is a lower triangular
- *> matrix.
- *>
- *> 3. If the leading i-by-i principal minor is not positive definite,
- *> then the routine returns with INFO = i. Otherwise, the factored
- *> form of A is used to estimate the condition number of the matrix
- *> A. If the reciprocal of the condition number is less than machine
- *> precision, INFO = N+1 is returned as a warning, but the routine
- *> still goes on to solve for X and compute error bounds as
- *> described below.
- *>
- *> 4. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 5. Iterative refinement is applied to improve the computed solution
- *> matrix and calculate error bounds and backward error estimates
- *> for it.
- *>
- *> 6. If equilibration was used, the matrix X is premultiplied by
- *> diag(S) so that it solves the original system before
- *> equilibration.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of the matrix A is
- *> supplied on entry, and if not, whether the matrix A should be
- *> equilibrated before it is factored.
- *> = 'F': On entry, AF contains the factored form of A.
- *> If EQUED = 'Y', the matrix A has been equilibrated
- *> with scaling factors given by S. A and AF will not
- *> be modified.
- *> = 'N': The matrix A will be copied to AF and factored.
- *> = 'E': The matrix A will be equilibrated if necessary, then
- *> copied to AF and factored.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the Hermitian matrix A, except if FACT = 'F' and
- *> EQUED = 'Y', then A must contain the equilibrated matrix
- *> diag(S)*A*diag(S). If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced. A is not modified if
- *> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
- *>
- *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
- *> diag(S)*A*diag(S).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] AF
- *> \verbatim
- *> AF is COMPLEX array, dimension (LDAF,N)
- *> If FACT = 'F', then AF is an input argument and on entry
- *> contains the triangular factor U or L from the Cholesky
- *> factorization A = U**H*U or A = L*L**H, in the same storage
- *> format as A. If EQUED .ne. 'N', then AF is the factored form
- *> of the equilibrated matrix diag(S)*A*diag(S).
- *>
- *> If FACT = 'N', then AF is an output argument and on exit
- *> returns the triangular factor U or L from the Cholesky
- *> factorization A = U**H*U or A = L*L**H of the original
- *> matrix A.
- *>
- *> If FACT = 'E', then AF is an output argument and on exit
- *> returns the triangular factor U or L from the Cholesky
- *> factorization A = U**H*U or A = L*L**H of the equilibrated
- *> matrix A (see the description of A for the form of the
- *> equilibrated matrix).
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] EQUED
- *> \verbatim
- *> EQUED is CHARACTER*1
- *> Specifies the form of equilibration that was done.
- *> = 'N': No equilibration (always true if FACT = 'N').
- *> = 'Y': Equilibration was done, i.e., A has been replaced by
- *> diag(S) * A * diag(S).
- *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
- *> output argument.
- *> \endverbatim
- *>
- *> \param[in,out] S
- *> \verbatim
- *> S is REAL array, dimension (N)
- *> The scale factors for A; not accessed if EQUED = 'N'. S is
- *> an input argument if FACT = 'F'; otherwise, S is an output
- *> argument. If FACT = 'F' and EQUED = 'Y', each element of S
- *> must be positive.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS righthand side matrix B.
- *> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
- *> B is overwritten by diag(S) * B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension (LDX,NRHS)
- *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
- *> the original system of equations. Note that if EQUED = 'Y',
- *> A and B are modified on exit, and the solution to the
- *> equilibrated system is inv(diag(S))*X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The estimate of the reciprocal condition number of the matrix
- *> A after equilibration (if done). If RCOND is less than the
- *> machine precision (in particular, if RCOND = 0), the matrix
- *> is singular to working precision. This condition is
- *> indicated by a return code of INFO > 0.
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is REAL array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is
- *> <= N: the leading minor of order i of A is
- *> not positive definite, so the factorization
- *> could not be completed, and the solution has not
- *> been computed. RCOND = 0 is returned.
- *> = N+1: U is nonsingular, but RCOND is less than machine
- *> precision, meaning that the matrix is singular
- *> to working precision. Nevertheless, the
- *> solution and error bounds are computed because
- *> there are a number of situations where the
- *> computed solution can be more accurate than the
- *> value of RCOND would suggest.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup complexPOsolve
- *
- * =====================================================================
- SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
- $ S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
- $ RWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER EQUED, FACT, UPLO
- INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
- REAL RCOND
- * ..
- * .. Array Arguments ..
- REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
- COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- $ WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL EQUIL, NOFACT, RCEQU
- INTEGER I, INFEQU, J
- REAL AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANHE, SLAMCH
- EXTERNAL LSAME, CLANHE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CLACPY, CLAQHE, CPOCON, CPOEQU, CPORFS, CPOTRF,
- $ CPOTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- EQUIL = LSAME( FACT, 'E' )
- IF( NOFACT .OR. EQUIL ) THEN
- EQUED = 'N'
- RCEQU = .FALSE.
- ELSE
- RCEQU = LSAME( EQUED, 'Y' )
- SMLNUM = SLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- END IF
- *
- * Test the input parameters.
- *
- IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
- $ THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
- $ THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
- $ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
- INFO = -9
- ELSE
- IF( RCEQU ) THEN
- SMIN = BIGNUM
- SMAX = ZERO
- DO 10 J = 1, N
- SMIN = MIN( SMIN, S( J ) )
- SMAX = MAX( SMAX, S( J ) )
- 10 CONTINUE
- IF( SMIN.LE.ZERO ) THEN
- INFO = -10
- ELSE IF( N.GT.0 ) THEN
- SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
- ELSE
- SCOND = ONE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -12
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -14
- END IF
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CPOSVX', -INFO )
- RETURN
- END IF
- *
- IF( EQUIL ) THEN
- *
- * Compute row and column scalings to equilibrate the matrix A.
- *
- CALL CPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
- IF( INFEQU.EQ.0 ) THEN
- *
- * Equilibrate the matrix.
- *
- CALL CLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
- RCEQU = LSAME( EQUED, 'Y' )
- END IF
- END IF
- *
- * Scale the right hand side.
- *
- IF( RCEQU ) THEN
- DO 30 J = 1, NRHS
- DO 20 I = 1, N
- B( I, J ) = S( I )*B( I, J )
- 20 CONTINUE
- 30 CONTINUE
- END IF
- *
- IF( NOFACT .OR. EQUIL ) THEN
- *
- * Compute the Cholesky factorization A = U**H *U or A = L*L**H.
- *
- CALL CLACPY( UPLO, N, N, A, LDA, AF, LDAF )
- CALL CPOTRF( UPLO, N, AF, LDAF, INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 )THEN
- RCOND = ZERO
- RETURN
- END IF
- END IF
- *
- * Compute the norm of the matrix A.
- *
- ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
- *
- * Compute the reciprocal of the condition number of A.
- *
- CALL CPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
- *
- * Compute the solution matrix X.
- *
- CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL CPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
- *
- * Use iterative refinement to improve the computed solution and
- * compute error bounds and backward error estimates for it.
- *
- CALL CPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
- $ FERR, BERR, WORK, RWORK, INFO )
- *
- * Transform the solution matrix X to a solution of the original
- * system.
- *
- IF( RCEQU ) THEN
- DO 50 J = 1, NRHS
- DO 40 I = 1, N
- X( I, J ) = S( I )*X( I, J )
- 40 CONTINUE
- 50 CONTINUE
- DO 60 J = 1, NRHS
- FERR( J ) = FERR( J ) / SCOND
- 60 CONTINUE
- END IF
- *
- * Set INFO = N+1 if the matrix is singular to working precision.
- *
- IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
- $ INFO = N + 1
- *
- RETURN
- *
- * End of CPOSVX
- *
- END
|