|
- *> \brief \b CPOEQUB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CPOEQUB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, N
- * REAL AMAX, SCOND
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * )
- * REAL S( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPOEQUB computes row and column scalings intended to equilibrate a
- *> Hermitian positive definite matrix A and reduce its condition number
- *> (with respect to the two-norm). S contains the scale factors,
- *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
- *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
- *> choice of S puts the condition number of B within a factor N of the
- *> smallest possible condition number over all possible diagonal
- *> scalings.
- *>
- *> This routine differs from CPOEQU by restricting the scaling factors
- *> to a power of the radix. Barring over- and underflow, scaling by
- *> these factors introduces no additional rounding errors. However, the
- *> scaled diagonal entries are no longer approximately 1 but lie
- *> between sqrt(radix) and 1/sqrt(radix).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The N-by-N Hermitian positive definite matrix whose scaling
- *> factors are to be computed. Only the diagonal elements of A
- *> are referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (N)
- *> If INFO = 0, S contains the scale factors for A.
- *> \endverbatim
- *>
- *> \param[out] SCOND
- *> \verbatim
- *> SCOND is REAL
- *> If INFO = 0, S contains the ratio of the smallest S(i) to
- *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
- *> large nor too small, it is not worth scaling by S.
- *> \endverbatim
- *>
- *> \param[out] AMAX
- *> \verbatim
- *> AMAX is REAL
- *> Absolute value of largest matrix element. If AMAX is very
- *> close to overflow or very close to underflow, the matrix
- *> should be scaled.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexPOcomputational
- *
- * =====================================================================
- SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, N
- REAL AMAX, SCOND
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * )
- REAL S( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I
- REAL SMIN, BASE, TMP
- * ..
- * .. External Functions ..
- REAL SLAMCH
- EXTERNAL SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT, LOG, INT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- * Positive definite only performs 1 pass of equilibration.
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -3
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CPOEQUB', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 ) THEN
- SCOND = ONE
- AMAX = ZERO
- RETURN
- END IF
-
- BASE = SLAMCH( 'B' )
- TMP = -0.5 / LOG ( BASE )
- *
- * Find the minimum and maximum diagonal elements.
- *
- S( 1 ) = A( 1, 1 )
- SMIN = S( 1 )
- AMAX = S( 1 )
- DO 10 I = 2, N
- S( I ) = A( I, I )
- SMIN = MIN( SMIN, S( I ) )
- AMAX = MAX( AMAX, S( I ) )
- 10 CONTINUE
- *
- IF( SMIN.LE.ZERO ) THEN
- *
- * Find the first non-positive diagonal element and return.
- *
- DO 20 I = 1, N
- IF( S( I ).LE.ZERO ) THEN
- INFO = I
- RETURN
- END IF
- 20 CONTINUE
- ELSE
- *
- * Set the scale factors to the reciprocals
- * of the diagonal elements.
- *
- DO 30 I = 1, N
- S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
- 30 CONTINUE
- *
- * Compute SCOND = min(S(I)) / max(S(I)).
- *
- SCOND = SQRT( SMIN ) / SQRT( AMAX )
- END IF
- *
- RETURN
- *
- * End of CPOEQUB
- *
- END
|