|
- *> \brief \b CPBSTF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CPBSTF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbstf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbstf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbstf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- * COMPLEX AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPBSTF computes a split Cholesky factorization of a complex
- *> Hermitian positive definite band matrix A.
- *>
- *> This routine is designed to be used in conjunction with CHBGST.
- *>
- *> The factorization has the form A = S**H*S where S is a band matrix
- *> of the same bandwidth as A and the following structure:
- *>
- *> S = ( U )
- *> ( M L )
- *>
- *> where U is upper triangular of order m = (n+kd)/2, and L is lower
- *> triangular of order n-m.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> On entry, the upper or lower triangle of the Hermitian band
- *> matrix A, stored in the first kd+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *>
- *> On exit, if INFO = 0, the factor S from the split Cholesky
- *> factorization A = S**H*S. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the factorization could not be completed,
- *> because the updated element a(i,i) was negative; the
- *> matrix A is not positive definite.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The band storage scheme is illustrated by the following example, when
- *> N = 7, KD = 2:
- *>
- *> S = ( s11 s12 s13 )
- *> ( s22 s23 s24 )
- *> ( s33 s34 )
- *> ( s44 )
- *> ( s53 s54 s55 )
- *> ( s64 s65 s66 )
- *> ( s75 s76 s77 )
- *>
- *> If UPLO = 'U', the array AB holds:
- *>
- *> on entry: on exit:
- *>
- *> * * a13 a24 a35 a46 a57 * * s13 s24 s53**H s64**H s75**H
- *> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54**H s65**H s76**H
- *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
- *>
- *> If UPLO = 'L', the array AB holds:
- *>
- *> on entry: on exit:
- *>
- *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
- *> a21 a32 a43 a54 a65 a76 * s12**H s23**H s34**H s54 s65 s76 *
- *> a31 a42 a53 a64 a64 * * s13**H s24**H s53 s64 s75 * *
- *>
- *> Array elements marked * are not used by the routine; s12**H denotes
- *> conjg(s12); the diagonal elements of S are real.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- COMPLEX AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, KLD, KM, M
- REAL AJJ
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL CHER, CLACGV, CSSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KD.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CPBSTF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- KLD = MAX( 1, LDAB-1 )
- *
- * Set the splitting point m.
- *
- M = ( N+KD ) / 2
- *
- IF( UPPER ) THEN
- *
- * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
- *
- DO 10 J = N, M + 1, -1
- *
- * Compute s(j,j) and test for non-positive-definiteness.
- *
- AJJ = REAL( AB( KD+1, J ) )
- IF( AJJ.LE.ZERO ) THEN
- AB( KD+1, J ) = AJJ
- GO TO 50
- END IF
- AJJ = SQRT( AJJ )
- AB( KD+1, J ) = AJJ
- KM = MIN( J-1, KD )
- *
- * Compute elements j-km:j-1 of the j-th column and update the
- * the leading submatrix within the band.
- *
- CALL CSSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
- CALL CHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
- $ AB( KD+1, J-KM ), KLD )
- 10 CONTINUE
- *
- * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
- *
- DO 20 J = 1, M
- *
- * Compute s(j,j) and test for non-positive-definiteness.
- *
- AJJ = REAL( AB( KD+1, J ) )
- IF( AJJ.LE.ZERO ) THEN
- AB( KD+1, J ) = AJJ
- GO TO 50
- END IF
- AJJ = SQRT( AJJ )
- AB( KD+1, J ) = AJJ
- KM = MIN( KD, M-J )
- *
- * Compute elements j+1:j+km of the j-th row and update the
- * trailing submatrix within the band.
- *
- IF( KM.GT.0 ) THEN
- CALL CSSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
- CALL CLACGV( KM, AB( KD, J+1 ), KLD )
- CALL CHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
- $ AB( KD+1, J+1 ), KLD )
- CALL CLACGV( KM, AB( KD, J+1 ), KLD )
- END IF
- 20 CONTINUE
- ELSE
- *
- * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
- *
- DO 30 J = N, M + 1, -1
- *
- * Compute s(j,j) and test for non-positive-definiteness.
- *
- AJJ = REAL( AB( 1, J ) )
- IF( AJJ.LE.ZERO ) THEN
- AB( 1, J ) = AJJ
- GO TO 50
- END IF
- AJJ = SQRT( AJJ )
- AB( 1, J ) = AJJ
- KM = MIN( J-1, KD )
- *
- * Compute elements j-km:j-1 of the j-th row and update the
- * trailing submatrix within the band.
- *
- CALL CSSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
- CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
- CALL CHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
- $ AB( 1, J-KM ), KLD )
- CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
- 30 CONTINUE
- *
- * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
- *
- DO 40 J = 1, M
- *
- * Compute s(j,j) and test for non-positive-definiteness.
- *
- AJJ = REAL( AB( 1, J ) )
- IF( AJJ.LE.ZERO ) THEN
- AB( 1, J ) = AJJ
- GO TO 50
- END IF
- AJJ = SQRT( AJJ )
- AB( 1, J ) = AJJ
- KM = MIN( KD, M-J )
- *
- * Compute elements j+1:j+km of the j-th column and update the
- * trailing submatrix within the band.
- *
- IF( KM.GT.0 ) THEN
- CALL CSSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
- CALL CHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
- $ AB( 1, J+1 ), KLD )
- END IF
- 40 CONTINUE
- END IF
- RETURN
- *
- 50 CONTINUE
- INFO = J
- RETURN
- *
- * End of CPBSTF
- *
- END
|