|
- *> \brief \b CLARZT forms the triangular factor T of a block reflector H = I - vtvH.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLARZT + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarzt.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarzt.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarzt.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIRECT, STOREV
- * INTEGER K, LDT, LDV, N
- * ..
- * .. Array Arguments ..
- * COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLARZT forms the triangular factor T of a complex block reflector
- *> H of order > n, which is defined as a product of k elementary
- *> reflectors.
- *>
- *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
- *>
- *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
- *>
- *> If STOREV = 'C', the vector which defines the elementary reflector
- *> H(i) is stored in the i-th column of the array V, and
- *>
- *> H = I - V * T * V**H
- *>
- *> If STOREV = 'R', the vector which defines the elementary reflector
- *> H(i) is stored in the i-th row of the array V, and
- *>
- *> H = I - V**H * T * V
- *>
- *> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DIRECT
- *> \verbatim
- *> DIRECT is CHARACTER*1
- *> Specifies the order in which the elementary reflectors are
- *> multiplied to form the block reflector:
- *> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
- *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
- *> \endverbatim
- *>
- *> \param[in] STOREV
- *> \verbatim
- *> STOREV is CHARACTER*1
- *> Specifies how the vectors which define the elementary
- *> reflectors are stored (see also Further Details):
- *> = 'C': columnwise (not supported yet)
- *> = 'R': rowwise
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the block reflector H. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The order of the triangular factor T (= the number of
- *> elementary reflectors). K >= 1.
- *> \endverbatim
- *>
- *> \param[in,out] V
- *> \verbatim
- *> V is COMPLEX array, dimension
- *> (LDV,K) if STOREV = 'C'
- *> (LDV,N) if STOREV = 'R'
- *> The matrix V. See further details.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V.
- *> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i).
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is COMPLEX array, dimension (LDT,K)
- *> The k by k triangular factor T of the block reflector.
- *> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
- *> lower triangular. The rest of the array is not used.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= K.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The shape of the matrix V and the storage of the vectors which define
- *> the H(i) is best illustrated by the following example with n = 5 and
- *> k = 3. The elements equal to 1 are not stored; the corresponding
- *> array elements are modified but restored on exit. The rest of the
- *> array is not used.
- *>
- *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
- *>
- *> ______V_____
- *> ( v1 v2 v3 ) / \
- *> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
- *> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
- *> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
- *> ( v1 v2 v3 )
- *> . . .
- *> . . .
- *> 1 . .
- *> 1 .
- *> 1
- *>
- *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
- *>
- *> ______V_____
- *> 1 / \
- *> . 1 ( 1 . . . . v1 v1 v1 v1 v1 )
- *> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
- *> . . . ( . . 1 . . v3 v3 v3 v3 v3 )
- *> . . .
- *> ( v1 v2 v3 )
- *> ( v1 v2 v3 )
- *> V = ( v1 v2 v3 )
- *> ( v1 v2 v3 )
- *> ( v1 v2 v3 )
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIRECT, STOREV
- INTEGER K, LDT, LDV, N
- * ..
- * .. Array Arguments ..
- COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMV, CLACGV, CTRMV, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Executable Statements ..
- *
- * Check for currently supported options
- *
- INFO = 0
- IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLARZT', -INFO )
- RETURN
- END IF
- *
- DO 20 I = K, 1, -1
- IF( TAU( I ).EQ.ZERO ) THEN
- *
- * H(i) = I
- *
- DO 10 J = I, K
- T( J, I ) = ZERO
- 10 CONTINUE
- ELSE
- *
- * general case
- *
- IF( I.LT.K ) THEN
- *
- * T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**H
- *
- CALL CLACGV( N, V( I, 1 ), LDV )
- CALL CGEMV( 'No transpose', K-I, N, -TAU( I ),
- $ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
- $ T( I+1, I ), 1 )
- CALL CLACGV( N, V( I, 1 ), LDV )
- *
- * T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
- *
- CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
- $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
- END IF
- T( I, I ) = TAU( I )
- END IF
- 20 CONTINUE
- RETURN
- *
- * End of CLARZT
- *
- END
|