|
- *> \brief \b CLARTG generates a plane rotation with real cosine and complex sine.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLARTG + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clartg.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clartg.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clartg.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLARTG( F, G, CS, SN, R )
- *
- * .. Scalar Arguments ..
- * REAL CS
- * COMPLEX F, G, R, SN
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLARTG generates a plane rotation so that
- *>
- *> [ CS SN ] [ F ] [ R ]
- *> [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1.
- *> [ -SN CS ] [ G ] [ 0 ]
- *>
- *> This is a faster version of the BLAS1 routine CROTG, except for
- *> the following differences:
- *> F and G are unchanged on return.
- *> If G=0, then CS=1 and SN=0.
- *> If F=0, then CS=0 and SN is chosen so that R is real.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] F
- *> \verbatim
- *> F is COMPLEX
- *> The first component of vector to be rotated.
- *> \endverbatim
- *>
- *> \param[in] G
- *> \verbatim
- *> G is COMPLEX
- *> The second component of vector to be rotated.
- *> \endverbatim
- *>
- *> \param[out] CS
- *> \verbatim
- *> CS is REAL
- *> The cosine of the rotation.
- *> \endverbatim
- *>
- *> \param[out] SN
- *> \verbatim
- *> SN is COMPLEX
- *> The sine of the rotation.
- *> \endverbatim
- *>
- *> \param[out] R
- *> \verbatim
- *> R is COMPLEX
- *> The nonzero component of the rotated vector.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
- *>
- *> This version has a few statements commented out for thread safety
- *> (machine parameters are computed on each entry). 10 feb 03, SJH.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CLARTG( F, G, CS, SN, R )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- REAL CS
- COMPLEX F, G, R, SN
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL TWO, ONE, ZERO
- PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
- COMPLEX CZERO
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- * LOGICAL FIRST
- INTEGER COUNT, I
- REAL D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
- $ SAFMN2, SAFMX2, SCALE
- COMPLEX FF, FS, GS
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLAPY2
- LOGICAL SISNAN
- EXTERNAL SLAMCH, SLAPY2, SISNAN
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
- $ SQRT
- * ..
- * .. Statement Functions ..
- REAL ABS1, ABSSQ
- * ..
- * .. Statement Function definitions ..
- ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
- ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2
- * ..
- * .. Executable Statements ..
- *
- SAFMIN = SLAMCH( 'S' )
- EPS = SLAMCH( 'E' )
- SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
- $ LOG( SLAMCH( 'B' ) ) / TWO )
- SAFMX2 = ONE / SAFMN2
- SCALE = MAX( ABS1( F ), ABS1( G ) )
- FS = F
- GS = G
- COUNT = 0
- IF( SCALE.GE.SAFMX2 ) THEN
- 10 CONTINUE
- COUNT = COUNT + 1
- FS = FS*SAFMN2
- GS = GS*SAFMN2
- SCALE = SCALE*SAFMN2
- IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20)
- $ GO TO 10
- ELSE IF( SCALE.LE.SAFMN2 ) THEN
- IF( G.EQ.CZERO.OR.SISNAN( ABS( G ) ) ) THEN
- CS = ONE
- SN = CZERO
- R = F
- RETURN
- END IF
- 20 CONTINUE
- COUNT = COUNT - 1
- FS = FS*SAFMX2
- GS = GS*SAFMX2
- SCALE = SCALE*SAFMX2
- IF( SCALE.LE.SAFMN2 )
- $ GO TO 20
- END IF
- F2 = ABSSQ( FS )
- G2 = ABSSQ( GS )
- IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
- *
- * This is a rare case: F is very small.
- *
- IF( F.EQ.CZERO ) THEN
- CS = ZERO
- R = SLAPY2( REAL( G ), AIMAG( G ) )
- * Do complex/real division explicitly with two real divisions
- D = SLAPY2( REAL( GS ), AIMAG( GS ) )
- SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
- RETURN
- END IF
- F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
- * G2 and G2S are accurate
- * G2 is at least SAFMIN, and G2S is at least SAFMN2
- G2S = SQRT( G2 )
- * Error in CS from underflow in F2S is at most
- * UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
- * If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
- * and so CS .lt. sqrt(SAFMIN)
- * If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
- * and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
- * Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
- CS = F2S / G2S
- * Make sure abs(FF) = 1
- * Do complex/real division explicitly with 2 real divisions
- IF( ABS1( F ).GT.ONE ) THEN
- D = SLAPY2( REAL( F ), AIMAG( F ) )
- FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
- ELSE
- DR = SAFMX2*REAL( F )
- DI = SAFMX2*AIMAG( F )
- D = SLAPY2( DR, DI )
- FF = CMPLX( DR / D, DI / D )
- END IF
- SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
- R = CS*F + SN*G
- ELSE
- *
- * This is the most common case.
- * Neither F2 nor F2/G2 are less than SAFMIN
- * F2S cannot overflow, and it is accurate
- *
- F2S = SQRT( ONE+G2 / F2 )
- * Do the F2S(real)*FS(complex) multiply with two real multiplies
- R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
- CS = ONE / F2S
- D = F2 + G2
- * Do complex/real division explicitly with two real divisions
- SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
- SN = SN*CONJG( GS )
- IF( COUNT.NE.0 ) THEN
- IF( COUNT.GT.0 ) THEN
- DO 30 I = 1, COUNT
- R = R*SAFMX2
- 30 CONTINUE
- ELSE
- DO 40 I = 1, -COUNT
- R = R*SAFMN2
- 40 CONTINUE
- END IF
- END IF
- END IF
- RETURN
- *
- * End of CLARTG
- *
- END
|