|
- *> \brief \b CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLARFGP + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfgp.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfgp.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfgp.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX, N
- * COMPLEX ALPHA, TAU
- * ..
- * .. Array Arguments ..
- * COMPLEX X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLARFGP generates a complex elementary reflector H of order n, such
- *> that
- *>
- *> H**H * ( alpha ) = ( beta ), H**H * H = I.
- *> ( x ) ( 0 )
- *>
- *> where alpha and beta are scalars, beta is real and non-negative, and
- *> x is an (n-1)-element complex vector. H is represented in the form
- *>
- *> H = I - tau * ( 1 ) * ( 1 v**H ) ,
- *> ( v )
- *>
- *> where tau is a complex scalar and v is a complex (n-1)-element
- *> vector. Note that H is not hermitian.
- *>
- *> If the elements of x are all zero and alpha is real, then tau = 0
- *> and H is taken to be the unit matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the elementary reflector.
- *> \endverbatim
- *>
- *> \param[in,out] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX
- *> On entry, the value alpha.
- *> On exit, it is overwritten with the value beta.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX array, dimension
- *> (1+(N-2)*abs(INCX))
- *> On entry, the vector x.
- *> On exit, it is overwritten with the vector v.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between elements of X. INCX > 0.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX
- *> The value tau.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2017
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
- *
- * -- LAPACK auxiliary routine (version 3.8.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2017
- *
- * .. Scalar Arguments ..
- INTEGER INCX, N
- COMPLEX ALPHA, TAU
- * ..
- * .. Array Arguments ..
- COMPLEX X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL TWO, ONE, ZERO
- PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J, KNT
- REAL ALPHI, ALPHR, BETA, BIGNUM, SMLNUM, XNORM
- COMPLEX SAVEALPHA
- * ..
- * .. External Functions ..
- REAL SCNRM2, SLAMCH, SLAPY3, SLAPY2
- COMPLEX CLADIV
- EXTERNAL SCNRM2, SLAMCH, SLAPY3, SLAPY2, CLADIV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN
- * ..
- * .. External Subroutines ..
- EXTERNAL CSCAL, CSSCAL
- * ..
- * .. Executable Statements ..
- *
- IF( N.LE.0 ) THEN
- TAU = ZERO
- RETURN
- END IF
- *
- XNORM = SCNRM2( N-1, X, INCX )
- ALPHR = REAL( ALPHA )
- ALPHI = AIMAG( ALPHA )
- *
- IF( XNORM.EQ.ZERO ) THEN
- *
- * H = [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
- *
- IF( ALPHI.EQ.ZERO ) THEN
- IF( ALPHR.GE.ZERO ) THEN
- * When TAU.eq.ZERO, the vector is special-cased to be
- * all zeros in the application routines. We do not need
- * to clear it.
- TAU = ZERO
- ELSE
- * However, the application routines rely on explicit
- * zero checks when TAU.ne.ZERO, and we must clear X.
- TAU = TWO
- DO J = 1, N-1
- X( 1 + (J-1)*INCX ) = ZERO
- END DO
- ALPHA = -ALPHA
- END IF
- ELSE
- * Only "reflecting" the diagonal entry to be real and non-negative.
- XNORM = SLAPY2( ALPHR, ALPHI )
- TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
- DO J = 1, N-1
- X( 1 + (J-1)*INCX ) = ZERO
- END DO
- ALPHA = XNORM
- END IF
- ELSE
- *
- * general case
- *
- BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
- SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' )
- BIGNUM = ONE / SMLNUM
- *
- KNT = 0
- IF( ABS( BETA ).LT.SMLNUM ) THEN
- *
- * XNORM, BETA may be inaccurate; scale X and recompute them
- *
- 10 CONTINUE
- KNT = KNT + 1
- CALL CSSCAL( N-1, BIGNUM, X, INCX )
- BETA = BETA*BIGNUM
- ALPHI = ALPHI*BIGNUM
- ALPHR = ALPHR*BIGNUM
- IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
- $ GO TO 10
- *
- * New BETA is at most 1, at least SMLNUM
- *
- XNORM = SCNRM2( N-1, X, INCX )
- ALPHA = CMPLX( ALPHR, ALPHI )
- BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
- END IF
- SAVEALPHA = ALPHA
- ALPHA = ALPHA + BETA
- IF( BETA.LT.ZERO ) THEN
- BETA = -BETA
- TAU = -ALPHA / BETA
- ELSE
- ALPHR = ALPHI * (ALPHI/REAL( ALPHA ))
- ALPHR = ALPHR + XNORM * (XNORM/REAL( ALPHA ))
- TAU = CMPLX( ALPHR/BETA, -ALPHI/BETA )
- ALPHA = CMPLX( -ALPHR, ALPHI )
- END IF
- ALPHA = CLADIV( CMPLX( ONE ), ALPHA )
- *
- IF ( ABS(TAU).LE.SMLNUM ) THEN
- *
- * In the case where the computed TAU ends up being a denormalized number,
- * it loses relative accuracy. This is a BIG problem. Solution: flush TAU
- * to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
- *
- * (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
- * (Thanks Pat. Thanks MathWorks.)
- *
- ALPHR = REAL( SAVEALPHA )
- ALPHI = AIMAG( SAVEALPHA )
- IF( ALPHI.EQ.ZERO ) THEN
- IF( ALPHR.GE.ZERO ) THEN
- TAU = ZERO
- ELSE
- TAU = TWO
- DO J = 1, N-1
- X( 1 + (J-1)*INCX ) = ZERO
- END DO
- BETA = -SAVEALPHA
- END IF
- ELSE
- XNORM = SLAPY2( ALPHR, ALPHI )
- TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
- DO J = 1, N-1
- X( 1 + (J-1)*INCX ) = ZERO
- END DO
- BETA = XNORM
- END IF
- *
- ELSE
- *
- * This is the general case.
- *
- CALL CSCAL( N-1, ALPHA, X, INCX )
- *
- END IF
- *
- * If BETA is subnormal, it may lose relative accuracy
- *
- DO 20 J = 1, KNT
- BETA = BETA*SMLNUM
- 20 CONTINUE
- ALPHA = BETA
- END IF
- *
- RETURN
- *
- * End of CLARFGP
- *
- END
|