|
- *> \brief \b CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLANHB + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanhb.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanhb.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanhb.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * REAL FUNCTION CLANHB( NORM, UPLO, N, K, AB, LDAB,
- * WORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM, UPLO
- * INTEGER K, LDAB, N
- * ..
- * .. Array Arguments ..
- * REAL WORK( * )
- * COMPLEX AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLANHB returns the value of the one norm, or the Frobenius norm, or
- *> the infinity norm, or the element of largest absolute value of an
- *> n by n hermitian band matrix A, with k super-diagonals.
- *> \endverbatim
- *>
- *> \return CLANHB
- *> \verbatim
- *>
- *> CLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- *> (
- *> ( norm1(A), NORM = '1', 'O' or 'o'
- *> (
- *> ( normI(A), NORM = 'I' or 'i'
- *> (
- *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
- *>
- *> where norm1 denotes the one norm of a matrix (maximum column sum),
- *> normI denotes the infinity norm of a matrix (maximum row sum) and
- *> normF denotes the Frobenius norm of a matrix (square root of sum of
- *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies the value to be returned in CLANHB as described
- *> above.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> band matrix A is supplied.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0. When N = 0, CLANHB is
- *> set to zero.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of super-diagonals or sub-diagonals of the
- *> band matrix A. K >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> The upper or lower triangle of the hermitian band matrix A,
- *> stored in the first K+1 rows of AB. The j-th column of A is
- *> stored in the j-th column of the array AB as follows:
- *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
- *> Note that the imaginary parts of the diagonal elements need
- *> not be set and are assumed to be zero.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= K+1.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK)),
- *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
- *> WORK is not referenced.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- REAL FUNCTION CLANHB( NORM, UPLO, N, K, AB, LDAB,
- $ WORK )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- IMPLICIT NONE
- * .. Scalar Arguments ..
- CHARACTER NORM, UPLO
- INTEGER K, LDAB, N
- * ..
- * .. Array Arguments ..
- REAL WORK( * )
- COMPLEX AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, L
- REAL ABSA, SUM, VALUE
- * ..
- * .. Local Arrays ..
- REAL SSQ( 2 ), COLSSQ( 2 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME, SISNAN
- EXTERNAL LSAME, SISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL CLASSQ, SCOMBSSQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- IF( N.EQ.0 ) THEN
- VALUE = ZERO
- ELSE IF( LSAME( NORM, 'M' ) ) THEN
- *
- * Find max(abs(A(i,j))).
- *
- VALUE = ZERO
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 20 J = 1, N
- DO 10 I = MAX( K+2-J, 1 ), K
- SUM = ABS( AB( I, J ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 10 CONTINUE
- SUM = ABS( REAL( AB( K+1, J ) ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 20 CONTINUE
- ELSE
- DO 40 J = 1, N
- SUM = ABS( REAL( AB( 1, J ) ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- DO 30 I = 2, MIN( N+1-J, K+1 )
- SUM = ABS( AB( I, J ) )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 30 CONTINUE
- 40 CONTINUE
- END IF
- ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
- $ ( NORM.EQ.'1' ) ) THEN
- *
- * Find normI(A) ( = norm1(A), since A is hermitian).
- *
- VALUE = ZERO
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 60 J = 1, N
- SUM = ZERO
- L = K + 1 - J
- DO 50 I = MAX( 1, J-K ), J - 1
- ABSA = ABS( AB( L+I, J ) )
- SUM = SUM + ABSA
- WORK( I ) = WORK( I ) + ABSA
- 50 CONTINUE
- WORK( J ) = SUM + ABS( REAL( AB( K+1, J ) ) )
- 60 CONTINUE
- DO 70 I = 1, N
- SUM = WORK( I )
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 70 CONTINUE
- ELSE
- DO 80 I = 1, N
- WORK( I ) = ZERO
- 80 CONTINUE
- DO 100 J = 1, N
- SUM = WORK( J ) + ABS( REAL( AB( 1, J ) ) )
- L = 1 - J
- DO 90 I = J + 1, MIN( N, J+K )
- ABSA = ABS( AB( L+I, J ) )
- SUM = SUM + ABSA
- WORK( I ) = WORK( I ) + ABSA
- 90 CONTINUE
- IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
- 100 CONTINUE
- END IF
- ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
- *
- * Find normF(A).
- * SSQ(1) is scale
- * SSQ(2) is sum-of-squares
- * For better accuracy, sum each column separately.
- *
- SSQ( 1 ) = ZERO
- SSQ( 2 ) = ONE
- *
- * Sum off-diagonals
- *
- IF( K.GT.0 ) THEN
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 110 J = 2, N
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- CALL CLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
- $ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
- CALL SCOMBSSQ( SSQ, COLSSQ )
- 110 CONTINUE
- L = K + 1
- ELSE
- DO 120 J = 1, N - 1
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
- $ COLSSQ( 1 ), COLSSQ( 2 ) )
- CALL SCOMBSSQ( SSQ, COLSSQ )
- 120 CONTINUE
- L = 1
- END IF
- SSQ( 2 ) = 2*SSQ( 2 )
- ELSE
- L = 1
- END IF
- *
- * Sum diagonal
- *
- COLSSQ( 1 ) = ZERO
- COLSSQ( 2 ) = ONE
- DO 130 J = 1, N
- IF( REAL( AB( L, J ) ).NE.ZERO ) THEN
- ABSA = ABS( REAL( AB( L, J ) ) )
- IF( COLSSQ( 1 ).LT.ABSA ) THEN
- COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
- COLSSQ( 1 ) = ABSA
- ELSE
- COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
- END IF
- END IF
- 130 CONTINUE
- CALL SCOMBSSQ( SSQ, COLSSQ )
- VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
- END IF
- *
- CLANHB = VALUE
- RETURN
- *
- * End of CLANHB
- *
- END
|