|
- *> \brief \b CLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLAED8 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed8.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed8.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed8.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
- * Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
- * GIVCOL, GIVNUM, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
- * REAL RHO
- * ..
- * .. Array Arguments ..
- * INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
- * $ INDXQ( * ), PERM( * )
- * REAL D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
- * $ Z( * )
- * COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLAED8 merges the two sets of eigenvalues together into a single
- *> sorted set. Then it tries to deflate the size of the problem.
- *> There are two ways in which deflation can occur: when two or more
- *> eigenvalues are close together or if there is a tiny element in the
- *> Z vector. For each such occurrence the order of the related secular
- *> equation problem is reduced by one.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER
- *> Contains the number of non-deflated eigenvalues.
- *> This is the order of the related secular equation.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] QSIZ
- *> \verbatim
- *> QSIZ is INTEGER
- *> The dimension of the unitary matrix used to reduce
- *> the dense or band matrix to tridiagonal form.
- *> QSIZ >= N if ICOMPQ = 1.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is COMPLEX array, dimension (LDQ,N)
- *> On entry, Q contains the eigenvectors of the partially solved
- *> system which has been previously updated in matrix
- *> multiplies with other partially solved eigensystems.
- *> On exit, Q contains the trailing (N-K) updated eigenvectors
- *> (those which were deflated) in its last N-K columns.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max( 1, N ).
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, D contains the eigenvalues of the two submatrices to
- *> be combined. On exit, D contains the trailing (N-K) updated
- *> eigenvalues (those which were deflated) sorted into increasing
- *> order.
- *> \endverbatim
- *>
- *> \param[in,out] RHO
- *> \verbatim
- *> RHO is REAL
- *> Contains the off diagonal element associated with the rank-1
- *> cut which originally split the two submatrices which are now
- *> being recombined. RHO is modified during the computation to
- *> the value required by SLAED3.
- *> \endverbatim
- *>
- *> \param[in] CUTPNT
- *> \verbatim
- *> CUTPNT is INTEGER
- *> Contains the location of the last eigenvalue in the leading
- *> sub-matrix. MIN(1,N) <= CUTPNT <= N.
- *> \endverbatim
- *>
- *> \param[in] Z
- *> \verbatim
- *> Z is REAL array, dimension (N)
- *> On input this vector contains the updating vector (the last
- *> row of the first sub-eigenvector matrix and the first row of
- *> the second sub-eigenvector matrix). The contents of Z are
- *> destroyed during the updating process.
- *> \endverbatim
- *>
- *> \param[out] DLAMDA
- *> \verbatim
- *> DLAMDA is REAL array, dimension (N)
- *> Contains a copy of the first K eigenvalues which will be used
- *> by SLAED3 to form the secular equation.
- *> \endverbatim
- *>
- *> \param[out] Q2
- *> \verbatim
- *> Q2 is COMPLEX array, dimension (LDQ2,N)
- *> If ICOMPQ = 0, Q2 is not referenced. Otherwise,
- *> Contains a copy of the first K eigenvectors which will be used
- *> by SLAED7 in a matrix multiply (SGEMM) to update the new
- *> eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDQ2
- *> \verbatim
- *> LDQ2 is INTEGER
- *> The leading dimension of the array Q2. LDQ2 >= max( 1, N ).
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> This will hold the first k values of the final
- *> deflation-altered z-vector and will be passed to SLAED3.
- *> \endverbatim
- *>
- *> \param[out] INDXP
- *> \verbatim
- *> INDXP is INTEGER array, dimension (N)
- *> This will contain the permutation used to place deflated
- *> values of D at the end of the array. On output INDXP(1:K)
- *> points to the nondeflated D-values and INDXP(K+1:N)
- *> points to the deflated eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] INDX
- *> \verbatim
- *> INDX is INTEGER array, dimension (N)
- *> This will contain the permutation used to sort the contents of
- *> D into ascending order.
- *> \endverbatim
- *>
- *> \param[in] INDXQ
- *> \verbatim
- *> INDXQ is INTEGER array, dimension (N)
- *> This contains the permutation which separately sorts the two
- *> sub-problems in D into ascending order. Note that elements in
- *> the second half of this permutation must first have CUTPNT
- *> added to their values in order to be accurate.
- *> \endverbatim
- *>
- *> \param[out] PERM
- *> \verbatim
- *> PERM is INTEGER array, dimension (N)
- *> Contains the permutations (from deflation and sorting) to be
- *> applied to each eigenblock.
- *> \endverbatim
- *>
- *> \param[out] GIVPTR
- *> \verbatim
- *> GIVPTR is INTEGER
- *> Contains the number of Givens rotations which took place in
- *> this subproblem.
- *> \endverbatim
- *>
- *> \param[out] GIVCOL
- *> \verbatim
- *> GIVCOL is INTEGER array, dimension (2, N)
- *> Each pair of numbers indicates a pair of columns to take place
- *> in a Givens rotation.
- *> \endverbatim
- *>
- *> \param[out] GIVNUM
- *> \verbatim
- *> GIVNUM is REAL array, dimension (2, N)
- *> Each number indicates the S value to be used in the
- *> corresponding Givens rotation.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
- $ Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
- $ GIVCOL, GIVNUM, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
- REAL RHO
- * ..
- * .. Array Arguments ..
- INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
- $ INDXQ( * ), PERM( * )
- REAL D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
- $ Z( * )
- COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL MONE, ZERO, ONE, TWO, EIGHT
- PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
- $ TWO = 2.0E0, EIGHT = 8.0E0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
- REAL C, EPS, S, T, TAU, TOL
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- REAL SLAMCH, SLAPY2
- EXTERNAL ISAMAX, SLAMCH, SLAPY2
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( QSIZ.LT.N ) THEN
- INFO = -3
- ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
- INFO = -8
- ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
- INFO = -12
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CLAED8', -INFO )
- RETURN
- END IF
- *
- * Need to initialize GIVPTR to O here in case of quick exit
- * to prevent an unspecified code behavior (usually sigfault)
- * when IWORK array on entry to *stedc is not zeroed
- * (or at least some IWORK entries which used in *laed7 for GIVPTR).
- *
- GIVPTR = 0
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- N1 = CUTPNT
- N2 = N - N1
- N1P1 = N1 + 1
- *
- IF( RHO.LT.ZERO ) THEN
- CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
- END IF
- *
- * Normalize z so that norm(z) = 1
- *
- T = ONE / SQRT( TWO )
- DO 10 J = 1, N
- INDX( J ) = J
- 10 CONTINUE
- CALL SSCAL( N, T, Z, 1 )
- RHO = ABS( TWO*RHO )
- *
- * Sort the eigenvalues into increasing order
- *
- DO 20 I = CUTPNT + 1, N
- INDXQ( I ) = INDXQ( I ) + CUTPNT
- 20 CONTINUE
- DO 30 I = 1, N
- DLAMDA( I ) = D( INDXQ( I ) )
- W( I ) = Z( INDXQ( I ) )
- 30 CONTINUE
- I = 1
- J = CUTPNT + 1
- CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
- DO 40 I = 1, N
- D( I ) = DLAMDA( INDX( I ) )
- Z( I ) = W( INDX( I ) )
- 40 CONTINUE
- *
- * Calculate the allowable deflation tolerance
- *
- IMAX = ISAMAX( N, Z, 1 )
- JMAX = ISAMAX( N, D, 1 )
- EPS = SLAMCH( 'Epsilon' )
- TOL = EIGHT*EPS*ABS( D( JMAX ) )
- *
- * If the rank-1 modifier is small enough, no more needs to be done
- * -- except to reorganize Q so that its columns correspond with the
- * elements in D.
- *
- IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
- K = 0
- DO 50 J = 1, N
- PERM( J ) = INDXQ( INDX( J ) )
- CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
- 50 CONTINUE
- CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ )
- RETURN
- END IF
- *
- * If there are multiple eigenvalues then the problem deflates. Here
- * the number of equal eigenvalues are found. As each equal
- * eigenvalue is found, an elementary reflector is computed to rotate
- * the corresponding eigensubspace so that the corresponding
- * components of Z are zero in this new basis.
- *
- K = 0
- K2 = N + 1
- DO 60 J = 1, N
- IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- INDXP( K2 ) = J
- IF( J.EQ.N )
- $ GO TO 100
- ELSE
- JLAM = J
- GO TO 70
- END IF
- 60 CONTINUE
- 70 CONTINUE
- J = J + 1
- IF( J.GT.N )
- $ GO TO 90
- IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- INDXP( K2 ) = J
- ELSE
- *
- * Check if eigenvalues are close enough to allow deflation.
- *
- S = Z( JLAM )
- C = Z( J )
- *
- * Find sqrt(a**2+b**2) without overflow or
- * destructive underflow.
- *
- TAU = SLAPY2( C, S )
- T = D( J ) - D( JLAM )
- C = C / TAU
- S = -S / TAU
- IF( ABS( T*C*S ).LE.TOL ) THEN
- *
- * Deflation is possible.
- *
- Z( J ) = TAU
- Z( JLAM ) = ZERO
- *
- * Record the appropriate Givens rotation
- *
- GIVPTR = GIVPTR + 1
- GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
- GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
- GIVNUM( 1, GIVPTR ) = C
- GIVNUM( 2, GIVPTR ) = S
- CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
- $ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
- T = D( JLAM )*C*C + D( J )*S*S
- D( J ) = D( JLAM )*S*S + D( J )*C*C
- D( JLAM ) = T
- K2 = K2 - 1
- I = 1
- 80 CONTINUE
- IF( K2+I.LE.N ) THEN
- IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
- INDXP( K2+I-1 ) = INDXP( K2+I )
- INDXP( K2+I ) = JLAM
- I = I + 1
- GO TO 80
- ELSE
- INDXP( K2+I-1 ) = JLAM
- END IF
- ELSE
- INDXP( K2+I-1 ) = JLAM
- END IF
- JLAM = J
- ELSE
- K = K + 1
- W( K ) = Z( JLAM )
- DLAMDA( K ) = D( JLAM )
- INDXP( K ) = JLAM
- JLAM = J
- END IF
- END IF
- GO TO 70
- 90 CONTINUE
- *
- * Record the last eigenvalue.
- *
- K = K + 1
- W( K ) = Z( JLAM )
- DLAMDA( K ) = D( JLAM )
- INDXP( K ) = JLAM
- *
- 100 CONTINUE
- *
- * Sort the eigenvalues and corresponding eigenvectors into DLAMDA
- * and Q2 respectively. The eigenvalues/vectors which were not
- * deflated go into the first K slots of DLAMDA and Q2 respectively,
- * while those which were deflated go into the last N - K slots.
- *
- DO 110 J = 1, N
- JP = INDXP( J )
- DLAMDA( J ) = D( JP )
- PERM( J ) = INDXQ( INDX( JP ) )
- CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
- 110 CONTINUE
- *
- * The deflated eigenvalues and their corresponding vectors go back
- * into the last N - K slots of D and Q respectively.
- *
- IF( K.LT.N ) THEN
- CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
- CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ),
- $ LDQ )
- END IF
- *
- RETURN
- *
- * End of CLAED8
- *
- END
|