|
- *> \brief \b CLACRM multiplies a complex matrix by a square real matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLACRM + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clacrm.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clacrm.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clacrm.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLACRM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LDC, M, N
- * ..
- * .. Array Arguments ..
- * REAL B( LDB, * ), RWORK( * )
- * COMPLEX A( LDA, * ), C( LDC, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLACRM performs a very simple matrix-matrix multiplication:
- *> C := A * B,
- *> where A is M by N and complex; B is N by N and real;
- *> C is M by N and complex.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A and of the matrix C.
- *> M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns and rows of the matrix B and
- *> the number of columns of the matrix C.
- *> N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> On entry, A contains the M by N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >=max(1,M).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB, N)
- *> On entry, B contains the N by N matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >=max(1,N).
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is COMPLEX array, dimension (LDC, N)
- *> On exit, C contains the M by N matrix C.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >=max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (2*M*N)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE CLACRM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LDC, M, N
- * ..
- * .. Array Arguments ..
- REAL B( LDB, * ), RWORK( * )
- COMPLEX A( LDA, * ), C( LDC, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, L
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC AIMAG, CMPLX, REAL
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible.
- *
- IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
- $ RETURN
- *
- DO 20 J = 1, N
- DO 10 I = 1, M
- RWORK( ( J-1 )*M+I ) = REAL( A( I, J ) )
- 10 CONTINUE
- 20 CONTINUE
- *
- L = M*N + 1
- CALL SGEMM( 'N', 'N', M, N, N, ONE, RWORK, M, B, LDB, ZERO,
- $ RWORK( L ), M )
- DO 40 J = 1, N
- DO 30 I = 1, M
- C( I, J ) = RWORK( L+( J-1 )*M+I-1 )
- 30 CONTINUE
- 40 CONTINUE
- *
- DO 60 J = 1, N
- DO 50 I = 1, M
- RWORK( ( J-1 )*M+I ) = AIMAG( A( I, J ) )
- 50 CONTINUE
- 60 CONTINUE
- CALL SGEMM( 'N', 'N', M, N, N, ONE, RWORK, M, B, LDB, ZERO,
- $ RWORK( L ), M )
- DO 80 J = 1, N
- DO 70 I = 1, M
- C( I, J ) = CMPLX( REAL( C( I, J ) ),
- $ RWORK( L+( J-1 )*M+I-1 ) )
- 70 CONTINUE
- 80 CONTINUE
- *
- RETURN
- *
- * End of CLACRM
- *
- END
|