|
- *> \brief \b CHETRD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHETRD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- * REAL D( * ), E( * )
- * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHETRD reduces a complex Hermitian matrix A to real symmetric
- *> tridiagonal form T by a unitary similarity transformation:
- *> Q**H * A * Q = T.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
- *> of A are overwritten by the corresponding elements of the
- *> tridiagonal matrix T, and the elements above the first
- *> superdiagonal, with the array TAU, represent the unitary
- *> matrix Q as a product of elementary reflectors; if UPLO
- *> = 'L', the diagonal and first subdiagonal of A are over-
- *> written by the corresponding elements of the tridiagonal
- *> matrix T, and the elements below the first subdiagonal, with
- *> the array TAU, represent the unitary matrix Q as a product
- *> of elementary reflectors. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The diagonal elements of the tridiagonal matrix T:
- *> D(i) = A(i,i).
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The off-diagonal elements of the tridiagonal matrix T:
- *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (N-1)
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= 1.
- *> For optimum performance LWORK >= N*NB, where NB is the
- *> optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexHEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> If UPLO = 'U', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(n-1) . . . H(2) H(1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
- *> A(1:i-1,i+1), and tau in TAU(i).
- *>
- *> If UPLO = 'L', the matrix Q is represented as a product of elementary
- *> reflectors
- *>
- *> Q = H(1) H(2) . . . H(n-1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
- *> and tau in TAU(i).
- *>
- *> The contents of A on exit are illustrated by the following examples
- *> with n = 5:
- *>
- *> if UPLO = 'U': if UPLO = 'L':
- *>
- *> ( d e v2 v3 v4 ) ( d )
- *> ( d e v3 v4 ) ( e d )
- *> ( d e v4 ) ( v1 e d )
- *> ( d e ) ( v1 v2 e d )
- *> ( d ) ( v1 v2 v3 e d )
- *>
- *> where d and e denote diagonal and off-diagonal elements of T, and vi
- *> denotes an element of the vector defining H(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- REAL D( * ), E( * )
- COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- COMPLEX CONE
- PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, UPPER
- INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
- $ NBMIN, NX
- * ..
- * .. External Subroutines ..
- EXTERNAL CHER2K, CHETD2, CLATRD, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -9
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- *
- * Determine the block size.
- *
- NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
- LWKOPT = N*NB
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHETRD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- NX = N
- IWS = 1
- IF( NB.GT.1 .AND. NB.LT.N ) THEN
- *
- * Determine when to cross over from blocked to unblocked code
- * (last block is always handled by unblocked code).
- *
- NX = MAX( NB, ILAENV( 3, 'CHETRD', UPLO, N, -1, -1, -1 ) )
- IF( NX.LT.N ) THEN
- *
- * Determine if workspace is large enough for blocked code.
- *
- LDWORK = N
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- *
- * Not enough workspace to use optimal NB: determine the
- * minimum value of NB, and reduce NB or force use of
- * unblocked code by setting NX = N.
- *
- NB = MAX( LWORK / LDWORK, 1 )
- NBMIN = ILAENV( 2, 'CHETRD', UPLO, N, -1, -1, -1 )
- IF( NB.LT.NBMIN )
- $ NX = N
- END IF
- ELSE
- NX = N
- END IF
- ELSE
- NB = 1
- END IF
- *
- IF( UPPER ) THEN
- *
- * Reduce the upper triangle of A.
- * Columns 1:kk are handled by the unblocked method.
- *
- KK = N - ( ( N-NX+NB-1 ) / NB )*NB
- DO 20 I = N - NB + 1, KK + 1, -NB
- *
- * Reduce columns i:i+nb-1 to tridiagonal form and form the
- * matrix W which is needed to update the unreduced part of
- * the matrix
- *
- CALL CLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
- $ LDWORK )
- *
- * Update the unreduced submatrix A(1:i-1,1:i-1), using an
- * update of the form: A := A - V*W**H - W*V**H
- *
- CALL CHER2K( UPLO, 'No transpose', I-1, NB, -CONE,
- $ A( 1, I ), LDA, WORK, LDWORK, ONE, A, LDA )
- *
- * Copy superdiagonal elements back into A, and diagonal
- * elements into D
- *
- DO 10 J = I, I + NB - 1
- A( J-1, J ) = E( J-1 )
- D( J ) = A( J, J )
- 10 CONTINUE
- 20 CONTINUE
- *
- * Use unblocked code to reduce the last or only block
- *
- CALL CHETD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
- ELSE
- *
- * Reduce the lower triangle of A
- *
- DO 40 I = 1, N - NX, NB
- *
- * Reduce columns i:i+nb-1 to tridiagonal form and form the
- * matrix W which is needed to update the unreduced part of
- * the matrix
- *
- CALL CLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
- $ TAU( I ), WORK, LDWORK )
- *
- * Update the unreduced submatrix A(i+nb:n,i+nb:n), using
- * an update of the form: A := A - V*W**H - W*V**H
- *
- CALL CHER2K( UPLO, 'No transpose', N-I-NB+1, NB, -CONE,
- $ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
- $ A( I+NB, I+NB ), LDA )
- *
- * Copy subdiagonal elements back into A, and diagonal
- * elements into D
- *
- DO 30 J = I, I + NB - 1
- A( J+1, J ) = E( J )
- D( J ) = A( J, J )
- 30 CONTINUE
- 40 CONTINUE
- *
- * Use unblocked code to reduce the last or only block
- *
- CALL CHETD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
- $ TAU( I ), IINFO )
- END IF
- *
- WORK( 1 ) = LWKOPT
- RETURN
- *
- * End of CHETRD
- *
- END
|