|
- *> \brief \b CHESV_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using the bounded Bunch-Kaufman ("rook") diagonal pivoting method
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CHESV_ROOK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chesv_rook.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chesv_rook.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chesv_rook.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHESV_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
- * LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LDB, LWORK, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHESV_ROOK computes the solution to a complex system of linear equations
- *> A * X = B,
- *> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
- *> matrices.
- *>
- *> The bounded Bunch-Kaufman ("rook") diagonal pivoting method is used
- *> to factor A as
- *> A = U * D * U**T, if UPLO = 'U', or
- *> A = L * D * L**T, if UPLO = 'L',
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, and D is Hermitian and block diagonal with
- *> 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> CHETRF_ROOK is called to compute the factorization of a complex
- *> Hermition matrix A using the bounded Bunch-Kaufman ("rook") diagonal
- *> pivoting method.
- *>
- *> The factored form of A is then used to solve the system
- *> of equations A * X = B by calling CHETRS_ROOK (uses BLAS 2).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the block diagonal matrix D and the
- *> multipliers used to obtain the factor U or L from the
- *> factorization A = U*D*U**H or A = L*D*L**H as computed by
- *> CHETRF_ROOK.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D.
- *>
- *> If UPLO = 'U':
- *> Only the last KB elements of IPIV are set.
- *>
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
- *> interchanged and D(k,k) is a 1-by-1 diagonal block.
- *>
- *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
- *> columns k and -IPIV(k) were interchanged and rows and
- *> columns k-1 and -IPIV(k-1) were inerchaged,
- *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
- *>
- *> If UPLO = 'L':
- *> Only the first KB elements of IPIV are set.
- *>
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
- *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
- *>
- *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
- *> columns k and -IPIV(k) were interchanged and rows and
- *> columns k+1 and -IPIV(k+1) were inerchaged,
- *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK. LWORK >= 1, and for best performance
- *> LWORK >= max(1,N*NB), where NB is the optimal blocksize for
- *> CHETRF_ROOK.
- *> for LWORK < N, TRS will be done with Level BLAS 2
- *> for LWORK >= N, TRS will be done with Level BLAS 3
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
- *> has been completed, but the block diagonal matrix D is
- *> exactly singular, so the solution could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2013
- *
- *> \ingroup complexHEsolve
- *>
- *> \verbatim
- *>
- *> November 2013, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
- *> School of Mathematics,
- *> University of Manchester
- *>
- *> \endverbatim
- *
- *
- * =====================================================================
- SUBROUTINE CHESV_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
- $ LWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.5.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2013
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LDB, LWORK, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER LWKOPT, NB
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, CHETRF_ROOK, CHETRS_ROOK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -10
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- LWKOPT = 1
- ELSE
- NB = ILAENV( 1, 'CHETRF_ROOK', UPLO, N, -1, -1, -1 )
- LWKOPT = N*NB
- END IF
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CHESV_ROOK ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Compute the factorization A = U*D*U**H or A = L*D*L**H.
- *
- CALL CHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
- IF( INFO.EQ.0 ) THEN
- *
- * Solve the system A*X = B, overwriting B with X.
- *
- * Solve with TRS ( Use Level BLAS 2)
- *
- CALL CHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
- *
- END IF
- *
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of CHESV_ROOK
- *
- END
|