|
- *> \brief <b> CGTSV computes the solution to system of linear equations A * X = B for GT matrices </b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGTSV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtsv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtsv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtsv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGTSV solves the equation
- *>
- *> A*X = B,
- *>
- *> where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
- *> partial pivoting.
- *>
- *> Note that the equation A**T *X = B may be solved by interchanging the
- *> order of the arguments DU and DL.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] DL
- *> \verbatim
- *> DL is COMPLEX array, dimension (N-1)
- *> On entry, DL must contain the (n-1) subdiagonal elements of
- *> A.
- *> On exit, DL is overwritten by the (n-2) elements of the
- *> second superdiagonal of the upper triangular matrix U from
- *> the LU factorization of A, in DL(1), ..., DL(n-2).
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is COMPLEX array, dimension (N)
- *> On entry, D must contain the diagonal elements of A.
- *> On exit, D is overwritten by the n diagonal elements of U.
- *> \endverbatim
- *>
- *> \param[in,out] DU
- *> \verbatim
- *> DU is COMPLEX array, dimension (N-1)
- *> On entry, DU must contain the (n-1) superdiagonal elements
- *> of A.
- *> On exit, DU is overwritten by the (n-1) elements of the first
- *> superdiagonal of U.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, U(i,i) is exactly zero, and the solution
- *> has not been computed. The factorization has not been
- *> completed unless i = N.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexGTsolve
- *
- * =====================================================================
- SUBROUTINE CGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER J, K
- COMPLEX MULT, TEMP, ZDUM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, MAX, REAL
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGTSV ', -INFO )
- RETURN
- END IF
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- DO 30 K = 1, N - 1
- IF( DL( K ).EQ.ZERO ) THEN
- *
- * Subdiagonal is zero, no elimination is required.
- *
- IF( D( K ).EQ.ZERO ) THEN
- *
- * Diagonal is zero: set INFO = K and return; a unique
- * solution can not be found.
- *
- INFO = K
- RETURN
- END IF
- ELSE IF( CABS1( D( K ) ).GE.CABS1( DL( K ) ) ) THEN
- *
- * No row interchange required
- *
- MULT = DL( K ) / D( K )
- D( K+1 ) = D( K+1 ) - MULT*DU( K )
- DO 10 J = 1, NRHS
- B( K+1, J ) = B( K+1, J ) - MULT*B( K, J )
- 10 CONTINUE
- IF( K.LT.( N-1 ) )
- $ DL( K ) = ZERO
- ELSE
- *
- * Interchange rows K and K+1
- *
- MULT = D( K ) / DL( K )
- D( K ) = DL( K )
- TEMP = D( K+1 )
- D( K+1 ) = DU( K ) - MULT*TEMP
- IF( K.LT.( N-1 ) ) THEN
- DL( K ) = DU( K+1 )
- DU( K+1 ) = -MULT*DL( K )
- END IF
- DU( K ) = TEMP
- DO 20 J = 1, NRHS
- TEMP = B( K, J )
- B( K, J ) = B( K+1, J )
- B( K+1, J ) = TEMP - MULT*B( K+1, J )
- 20 CONTINUE
- END IF
- 30 CONTINUE
- IF( D( N ).EQ.ZERO ) THEN
- INFO = N
- RETURN
- END IF
- *
- * Back solve with the matrix U from the factorization.
- *
- DO 50 J = 1, NRHS
- B( N, J ) = B( N, J ) / D( N )
- IF( N.GT.1 )
- $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
- DO 40 K = N - 2, 1, -1
- B( K, J ) = ( B( K, J )-DU( K )*B( K+1, J )-DL( K )*
- $ B( K+2, J ) ) / D( K )
- 40 CONTINUE
- 50 CONTINUE
- *
- RETURN
- *
- * End of CGTSV
- *
- END
|