|
- *> \brief \b CGETRF2
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * RECURSIVE SUBROUTINE CGETRF2( M, N, A, LDA, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGETRF2 computes an LU factorization of a general M-by-N matrix A
- *> using partial pivoting with row interchanges.
- *>
- *> The factorization has the form
- *> A = P * L * U
- *> where P is a permutation matrix, L is lower triangular with unit
- *> diagonal elements (lower trapezoidal if m > n), and U is upper
- *> triangular (upper trapezoidal if m < n).
- *>
- *> This is the recursive version of the algorithm. It divides
- *> the matrix into four submatrices:
- *>
- *> [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
- *> A = [ -----|----- ] with n1 = min(m,n)/2
- *> [ A21 | A22 ] n2 = n-n1
- *>
- *> [ A11 ]
- *> The subroutine calls itself to factor [ --- ],
- *> [ A12 ]
- *> [ A12 ]
- *> do the swaps on [ --- ], solve A12, update A22,
- *> [ A22 ]
- *>
- *> then calls itself to factor A22 and do the swaps on A21.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the M-by-N matrix to be factored.
- *> On exit, the factors L and U from the factorization
- *> A = P*L*U; the unit diagonal elements of L are not stored.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (min(M,N))
- *> The pivot indices; for 1 <= i <= min(M,N), row i of the
- *> matrix was interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly
- *> singular, and division by zero will occur if it is used
- *> to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup complexGEcomputational
- *
- * =====================================================================
- RECURSIVE SUBROUTINE CGETRF2( M, N, A, LDA, IPIV, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE, ZERO
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
- $ ZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- REAL SFMIN
- COMPLEX TEMP
- INTEGER I, IINFO, N1, N2
- * ..
- * .. External Functions ..
- REAL SLAMCH
- INTEGER ICAMAX
- EXTERNAL SLAMCH, ICAMAX
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM, CSCAL, CLASWP, CTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGETRF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
-
- IF ( M.EQ.1 ) THEN
- *
- * Use unblocked code for one row case
- * Just need to handle IPIV and INFO
- *
- IPIV( 1 ) = 1
- IF ( A(1,1).EQ.ZERO )
- $ INFO = 1
- *
- ELSE IF( N.EQ.1 ) THEN
- *
- * Use unblocked code for one column case
- *
- *
- * Compute machine safe minimum
- *
- SFMIN = SLAMCH('S')
- *
- * Find pivot and test for singularity
- *
- I = ICAMAX( M, A( 1, 1 ), 1 )
- IPIV( 1 ) = I
- IF( A( I, 1 ).NE.ZERO ) THEN
- *
- * Apply the interchange
- *
- IF( I.NE.1 ) THEN
- TEMP = A( 1, 1 )
- A( 1, 1 ) = A( I, 1 )
- A( I, 1 ) = TEMP
- END IF
- *
- * Compute elements 2:M of the column
- *
- IF( ABS(A( 1, 1 )) .GE. SFMIN ) THEN
- CALL CSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
- ELSE
- DO 10 I = 1, M-1
- A( 1+I, 1 ) = A( 1+I, 1 ) / A( 1, 1 )
- 10 CONTINUE
- END IF
- *
- ELSE
- INFO = 1
- END IF
- *
- ELSE
- *
- * Use recursive code
- *
- N1 = MIN( M, N ) / 2
- N2 = N-N1
- *
- * [ A11 ]
- * Factor [ --- ]
- * [ A21 ]
- *
- CALL CGETRF2( M, N1, A, LDA, IPIV, IINFO )
-
- IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO
- *
- * [ A12 ]
- * Apply interchanges to [ --- ]
- * [ A22 ]
- *
- CALL CLASWP( N2, A( 1, N1+1 ), LDA, 1, N1, IPIV, 1 )
- *
- * Solve A12
- *
- CALL CTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,
- $ A( 1, N1+1 ), LDA )
- *
- * Update A22
- *
- CALL CGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,
- $ A( 1, N1+1 ), LDA, ONE, A( N1+1, N1+1 ), LDA )
- *
- * Factor A22
- *
- CALL CGETRF2( M-N1, N2, A( N1+1, N1+1 ), LDA, IPIV( N1+1 ),
- $ IINFO )
- *
- * Adjust INFO and the pivot indices
- *
- IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + N1
- DO 20 I = N1+1, MIN( M, N )
- IPIV( I ) = IPIV( I ) + N1
- 20 CONTINUE
- *
- * Apply interchanges to A21
- *
- CALL CLASWP( N1, A( 1, 1 ), LDA, N1+1, MIN( M, N), IPIV, 1 )
- *
- END IF
- RETURN
- *
- * End of CGETRF2
- *
- END
|