|
- *> \brief \b CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGEQR2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqr2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqr2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqr2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGEQR2( M, N, A, LDA, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGEQR2 computes a QR factorization of a complex m-by-n matrix A:
- *>
- *> A = Q * ( R ),
- *> ( 0 )
- *>
- *> where:
- *>
- *> Q is a m-by-m orthogonal matrix;
- *> R is an upper-triangular n-by-n matrix;
- *> 0 is a (m-n)-by-n zero matrix, if m > n.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the m by n matrix A.
- *> On exit, the elements on and above the diagonal of the array
- *> contain the min(m,n) by n upper trapezoidal matrix R (R is
- *> upper triangular if m >= n); the elements below the diagonal,
- *> with the array TAU, represent the unitary matrix Q as a
- *> product of elementary reflectors (see Further Details).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2019
- *
- *> \ingroup complexGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of elementary reflectors
- *>
- *> Q = H(1) H(2) . . . H(k), where k = min(m,n).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
- *> and tau in TAU(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGEQR2( M, N, A, LDA, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.9.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2019
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, K
- COMPLEX ALPHA
- * ..
- * .. External Subroutines ..
- EXTERNAL CLARF, CLARFG, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGEQR2', -INFO )
- RETURN
- END IF
- *
- K = MIN( M, N )
- *
- DO 10 I = 1, K
- *
- * Generate elementary reflector H(i) to annihilate A(i+1:m,i)
- *
- CALL CLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
- $ TAU( I ) )
- IF( I.LT.N ) THEN
- *
- * Apply H(i)**H to A(i:m,i+1:n) from the left
- *
- ALPHA = A( I, I )
- A( I, I ) = ONE
- CALL CLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
- $ CONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
- A( I, I ) = ALPHA
- END IF
- 10 CONTINUE
- RETURN
- *
- * End of CGEQR2
- *
- END
|