|
- *> \brief \b CGEQP3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGEQP3 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqp3.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqp3.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqp3.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER JPVT( * )
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGEQP3 computes a QR factorization with column pivoting of a
- *> matrix A: A*P = Q*R using Level 3 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, the upper triangle of the array contains the
- *> min(M,N)-by-N upper trapezoidal matrix R; the elements below
- *> the diagonal, together with the array TAU, represent the
- *> unitary matrix Q as a product of min(M,N) elementary
- *> reflectors.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] JPVT
- *> \verbatim
- *> JPVT is INTEGER array, dimension (N)
- *> On entry, if JPVT(J).ne.0, the J-th column of A is permuted
- *> to the front of A*P (a leading column); if JPVT(J)=0,
- *> the J-th column of A is a free column.
- *> On exit, if JPVT(J)=K, then the J-th column of A*P was the
- *> the K-th column of A.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO=0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= N+1.
- *> For optimal performance LWORK >= ( N+1 )*NB, where NB
- *> is the optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of elementary reflectors
- *>
- *> Q = H(1) H(2) . . . H(k), where k = min(m,n).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a real/complex vector
- *> with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
- *> A(i+1:m,i), and tau in TAU(i).
- *> \endverbatim
- *
- *> \par Contributors:
- * ==================
- *>
- *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
- *> X. Sun, Computer Science Dept., Duke University, USA
- *>
- * =====================================================================
- SUBROUTINE CGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
- $ INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- INTEGER JPVT( * )
- REAL RWORK( * )
- COMPLEX A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER INB, INBMIN, IXOVER
- PARAMETER ( INB = 1, INBMIN = 2, IXOVER = 3 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
- $ NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEQRF, CLAQP2, CLAQPS, CSWAP, CUNMQR, XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- REAL SCNRM2
- EXTERNAL ILAENV, SCNRM2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC INT, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test input arguments
- * ====================
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- MINMN = MIN( M, N )
- IF( MINMN.EQ.0 ) THEN
- IWS = 1
- LWKOPT = 1
- ELSE
- IWS = N + 1
- NB = ILAENV( INB, 'CGEQRF', ' ', M, N, -1, -1 )
- LWKOPT = ( N + 1 )*NB
- END IF
- WORK( 1 ) = CMPLX( LWKOPT )
- *
- IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGEQP3', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Move initial columns up front.
- *
- NFXD = 1
- DO 10 J = 1, N
- IF( JPVT( J ).NE.0 ) THEN
- IF( J.NE.NFXD ) THEN
- CALL CSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
- JPVT( J ) = JPVT( NFXD )
- JPVT( NFXD ) = J
- ELSE
- JPVT( J ) = J
- END IF
- NFXD = NFXD + 1
- ELSE
- JPVT( J ) = J
- END IF
- 10 CONTINUE
- NFXD = NFXD - 1
- *
- * Factorize fixed columns
- * =======================
- *
- * Compute the QR factorization of fixed columns and update
- * remaining columns.
- *
- IF( NFXD.GT.0 ) THEN
- NA = MIN( M, NFXD )
- *CC CALL CGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
- CALL CGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
- IWS = MAX( IWS, INT( WORK( 1 ) ) )
- IF( NA.LT.N ) THEN
- *CC CALL CUNM2R( 'Left', 'Conjugate Transpose', M, N-NA,
- *CC $ NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK,
- *CC $ INFO )
- CALL CUNMQR( 'Left', 'Conjugate Transpose', M, N-NA, NA, A,
- $ LDA, TAU, A( 1, NA+1 ), LDA, WORK, LWORK,
- $ INFO )
- IWS = MAX( IWS, INT( WORK( 1 ) ) )
- END IF
- END IF
- *
- * Factorize free columns
- * ======================
- *
- IF( NFXD.LT.MINMN ) THEN
- *
- SM = M - NFXD
- SN = N - NFXD
- SMINMN = MINMN - NFXD
- *
- * Determine the block size.
- *
- NB = ILAENV( INB, 'CGEQRF', ' ', SM, SN, -1, -1 )
- NBMIN = 2
- NX = 0
- *
- IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
- *
- * Determine when to cross over from blocked to unblocked code.
- *
- NX = MAX( 0, ILAENV( IXOVER, 'CGEQRF', ' ', SM, SN, -1,
- $ -1 ) )
- *
- *
- IF( NX.LT.SMINMN ) THEN
- *
- * Determine if workspace is large enough for blocked code.
- *
- MINWS = ( SN+1 )*NB
- IWS = MAX( IWS, MINWS )
- IF( LWORK.LT.MINWS ) THEN
- *
- * Not enough workspace to use optimal NB: Reduce NB and
- * determine the minimum value of NB.
- *
- NB = LWORK / ( SN+1 )
- NBMIN = MAX( 2, ILAENV( INBMIN, 'CGEQRF', ' ', SM, SN,
- $ -1, -1 ) )
- *
- *
- END IF
- END IF
- END IF
- *
- * Initialize partial column norms. The first N elements of work
- * store the exact column norms.
- *
- DO 20 J = NFXD + 1, N
- RWORK( J ) = SCNRM2( SM, A( NFXD+1, J ), 1 )
- RWORK( N+J ) = RWORK( J )
- 20 CONTINUE
- *
- IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
- $ ( NX.LT.SMINMN ) ) THEN
- *
- * Use blocked code initially.
- *
- J = NFXD + 1
- *
- * Compute factorization: while loop.
- *
- *
- TOPBMN = MINMN - NX
- 30 CONTINUE
- IF( J.LE.TOPBMN ) THEN
- JB = MIN( NB, TOPBMN-J+1 )
- *
- * Factorize JB columns among columns J:N.
- *
- CALL CLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
- $ JPVT( J ), TAU( J ), RWORK( J ),
- $ RWORK( N+J ), WORK( 1 ), WORK( JB+1 ),
- $ N-J+1 )
- *
- J = J + FJB
- GO TO 30
- END IF
- ELSE
- J = NFXD + 1
- END IF
- *
- * Use unblocked code to factor the last or only block.
- *
- *
- IF( J.LE.MINMN )
- $ CALL CLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
- $ TAU( J ), RWORK( J ), RWORK( N+J ), WORK( 1 ) )
- *
- END IF
- *
- WORK( 1 ) = CMPLX( LWKOPT )
- RETURN
- *
- * End of CGEQP3
- *
- END
|