|
- *> \brief <b> CGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGEESX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeesx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeesx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeesx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
- * VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
- * BWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBVS, SENSE, SORT
- * INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
- * REAL RCONDE, RCONDV
- * ..
- * .. Array Arguments ..
- * LOGICAL BWORK( * )
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
- * ..
- * .. Function Arguments ..
- * LOGICAL SELECT
- * EXTERNAL SELECT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGEESX computes for an N-by-N complex nonsymmetric matrix A, the
- *> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
- *> vectors Z. This gives the Schur factorization A = Z*T*(Z**H).
- *>
- *> Optionally, it also orders the eigenvalues on the diagonal of the
- *> Schur form so that selected eigenvalues are at the top left;
- *> computes a reciprocal condition number for the average of the
- *> selected eigenvalues (RCONDE); and computes a reciprocal condition
- *> number for the right invariant subspace corresponding to the
- *> selected eigenvalues (RCONDV). The leading columns of Z form an
- *> orthonormal basis for this invariant subspace.
- *>
- *> For further explanation of the reciprocal condition numbers RCONDE
- *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
- *> these quantities are called s and sep respectively).
- *>
- *> A complex matrix is in Schur form if it is upper triangular.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBVS
- *> \verbatim
- *> JOBVS is CHARACTER*1
- *> = 'N': Schur vectors are not computed;
- *> = 'V': Schur vectors are computed.
- *> \endverbatim
- *>
- *> \param[in] SORT
- *> \verbatim
- *> SORT is CHARACTER*1
- *> Specifies whether or not to order the eigenvalues on the
- *> diagonal of the Schur form.
- *> = 'N': Eigenvalues are not ordered;
- *> = 'S': Eigenvalues are ordered (see SELECT).
- *> \endverbatim
- *>
- *> \param[in] SELECT
- *> \verbatim
- *> SELECT is a LOGICAL FUNCTION of one COMPLEX argument
- *> SELECT must be declared EXTERNAL in the calling subroutine.
- *> If SORT = 'S', SELECT is used to select eigenvalues to order
- *> to the top left of the Schur form.
- *> If SORT = 'N', SELECT is not referenced.
- *> An eigenvalue W(j) is selected if SELECT(W(j)) is true.
- *> \endverbatim
- *>
- *> \param[in] SENSE
- *> \verbatim
- *> SENSE is CHARACTER*1
- *> Determines which reciprocal condition numbers are computed.
- *> = 'N': None are computed;
- *> = 'E': Computed for average of selected eigenvalues only;
- *> = 'V': Computed for selected right invariant subspace only;
- *> = 'B': Computed for both.
- *> If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> On entry, the N-by-N matrix A.
- *> On exit, A is overwritten by its Schur form T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] SDIM
- *> \verbatim
- *> SDIM is INTEGER
- *> If SORT = 'N', SDIM = 0.
- *> If SORT = 'S', SDIM = number of eigenvalues for which
- *> SELECT is true.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is COMPLEX array, dimension (N)
- *> W contains the computed eigenvalues, in the same order
- *> that they appear on the diagonal of the output Schur form T.
- *> \endverbatim
- *>
- *> \param[out] VS
- *> \verbatim
- *> VS is COMPLEX array, dimension (LDVS,N)
- *> If JOBVS = 'V', VS contains the unitary matrix Z of Schur
- *> vectors.
- *> If JOBVS = 'N', VS is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVS
- *> \verbatim
- *> LDVS is INTEGER
- *> The leading dimension of the array VS. LDVS >= 1, and if
- *> JOBVS = 'V', LDVS >= N.
- *> \endverbatim
- *>
- *> \param[out] RCONDE
- *> \verbatim
- *> RCONDE is REAL
- *> If SENSE = 'E' or 'B', RCONDE contains the reciprocal
- *> condition number for the average of the selected eigenvalues.
- *> Not referenced if SENSE = 'N' or 'V'.
- *> \endverbatim
- *>
- *> \param[out] RCONDV
- *> \verbatim
- *> RCONDV is REAL
- *> If SENSE = 'V' or 'B', RCONDV contains the reciprocal
- *> condition number for the selected right invariant subspace.
- *> Not referenced if SENSE = 'N' or 'E'.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,2*N).
- *> Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM),
- *> where SDIM is the number of selected eigenvalues computed by
- *> this routine. Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also
- *> that an error is only returned if LWORK < max(1,2*N), but if
- *> SENSE = 'E' or 'V' or 'B' this may not be large enough.
- *> For good performance, LWORK must generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates upper bound on the optimal size of the
- *> array WORK, returns this value as the first entry of the WORK
- *> array, and no error message related to LWORK is issued by
- *> XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] BWORK
- *> \verbatim
- *> BWORK is LOGICAL array, dimension (N)
- *> Not referenced if SORT = 'N'.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, and i is
- *> <= N: the QR algorithm failed to compute all the
- *> eigenvalues; elements 1:ILO-1 and i+1:N of W
- *> contain those eigenvalues which have converged; if
- *> JOBVS = 'V', VS contains the transformation which
- *> reduces A to its partially converged Schur form.
- *> = N+1: the eigenvalues could not be reordered because some
- *> eigenvalues were too close to separate (the problem
- *> is very ill-conditioned);
- *> = N+2: after reordering, roundoff changed values of some
- *> complex eigenvalues so that leading eigenvalues in
- *> the Schur form no longer satisfy SELECT=.TRUE. This
- *> could also be caused by underflow due to scaling.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup complexGEeigen
- *
- * =====================================================================
- SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
- $ VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
- $ BWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * .. Scalar Arguments ..
- CHARACTER JOBVS, SENSE, SORT
- INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
- REAL RCONDE, RCONDV
- * ..
- * .. Array Arguments ..
- LOGICAL BWORK( * )
- REAL RWORK( * )
- COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
- * ..
- * .. Function Arguments ..
- LOGICAL SELECT
- EXTERNAL SELECT
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, SCALEA, WANTSB, WANTSE, WANTSN, WANTST,
- $ WANTSV, WANTVS
- INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
- $ ITAU, IWRK, LWRK, MAXWRK, MINWRK
- REAL ANRM, BIGNUM, CSCALE, EPS, SMLNUM
- * ..
- * .. Local Arrays ..
- REAL DUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY,
- $ CLASCL, CTRSEN, CUNGHR, SLABAD, SLASCL, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL CLANGE, SLAMCH
- EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- WANTVS = LSAME( JOBVS, 'V' )
- WANTST = LSAME( SORT, 'S' )
- WANTSN = LSAME( SENSE, 'N' )
- WANTSE = LSAME( SENSE, 'E' )
- WANTSV = LSAME( SENSE, 'V' )
- WANTSB = LSAME( SENSE, 'B' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
- $ ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
- INFO = -4
- ELSE IF( N.LT.0 ) THEN
- INFO = -5
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
- INFO = -11
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of real workspace needed at that point in the
- * code, as well as the preferred amount for good performance.
- * CWorkspace refers to complex workspace, and RWorkspace to real
- * workspace. NB refers to the optimal block size for the
- * immediately following subroutine, as returned by ILAENV.
- * HSWORK refers to the workspace preferred by CHSEQR, as
- * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
- * the worst case.
- * If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
- * depends on SDIM, which is computed by the routine CTRSEN later
- * in the code.)
- *
- IF( INFO.EQ.0 ) THEN
- IF( N.EQ.0 ) THEN
- MINWRK = 1
- LWRK = 1
- ELSE
- MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 )
- MINWRK = 2*N
- *
- CALL CHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
- $ WORK, -1, IEVAL )
- HSWORK = WORK( 1 )
- *
- IF( .NOT.WANTVS ) THEN
- MAXWRK = MAX( MAXWRK, HSWORK )
- ELSE
- MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
- $ ' ', N, 1, N, -1 ) )
- MAXWRK = MAX( MAXWRK, HSWORK )
- END IF
- LWRK = MAXWRK
- IF( .NOT.WANTSN )
- $ LWRK = MAX( LWRK, ( N*N )/2 )
- END IF
- WORK( 1 ) = LWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -15
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGEESX', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- SDIM = 0
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SLAMCH( 'S' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- SMLNUM = SQRT( SMLNUM ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
- SCALEA = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = SMLNUM
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- SCALEA = .TRUE.
- CSCALE = BIGNUM
- END IF
- IF( SCALEA )
- $ CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
- *
- *
- * Permute the matrix to make it more nearly triangular
- * (CWorkspace: none)
- * (RWorkspace: need N)
- *
- IBAL = 1
- CALL CGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
- *
- * Reduce to upper Hessenberg form
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: none)
- *
- ITAU = 1
- IWRK = N + ITAU
- CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- *
- IF( WANTVS ) THEN
- *
- * Copy Householder vectors to VS
- *
- CALL CLACPY( 'L', N, N, A, LDA, VS, LDVS )
- *
- * Generate unitary matrix in VS
- * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
- * (RWorkspace: none)
- *
- CALL CUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
- $ LWORK-IWRK+1, IERR )
- END IF
- *
- SDIM = 0
- *
- * Perform QR iteration, accumulating Schur vectors in VS if desired
- * (CWorkspace: need 1, prefer HSWORK (see comments) )
- * (RWorkspace: none)
- *
- IWRK = ITAU
- CALL CHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
- $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
- IF( IEVAL.GT.0 )
- $ INFO = IEVAL
- *
- * Sort eigenvalues if desired
- *
- IF( WANTST .AND. INFO.EQ.0 ) THEN
- IF( SCALEA )
- $ CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
- DO 10 I = 1, N
- BWORK( I ) = SELECT( W( I ) )
- 10 CONTINUE
- *
- * Reorder eigenvalues, transform Schur vectors, and compute
- * reciprocal condition numbers
- * (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)
- * otherwise, need none )
- * (RWorkspace: none)
- *
- CALL CTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
- $ RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
- $ ICOND )
- IF( .NOT.WANTSN )
- $ MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
- IF( ICOND.EQ.-14 ) THEN
- *
- * Not enough complex workspace
- *
- INFO = -15
- END IF
- END IF
- *
- IF( WANTVS ) THEN
- *
- * Undo balancing
- * (CWorkspace: none)
- * (RWorkspace: need N)
- *
- CALL CGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
- $ IERR )
- END IF
- *
- IF( SCALEA ) THEN
- *
- * Undo scaling for the Schur form of A
- *
- CALL CLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
- CALL CCOPY( N, A, LDA+1, W, 1 )
- IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
- DUM( 1 ) = RCONDV
- CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
- RCONDV = DUM( 1 )
- END IF
- END IF
- *
- WORK( 1 ) = MAXWRK
- RETURN
- *
- * End of CGEESX
- *
- END
|