|
- *> \brief \b CGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGBTF2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtf2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtf2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtf2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, KL, KU, LDAB, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * COMPLEX AB( LDAB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGBTF2 computes an LU factorization of a complex m-by-n band matrix
- *> A using partial pivoting with row interchanges.
- *>
- *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> On entry, the matrix A in band storage, in rows KL+1 to
- *> 2*KL+KU+1; rows 1 to KL of the array need not be set.
- *> The j-th column of A is stored in the j-th column of the
- *> array AB as follows:
- *> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
- *>
- *> On exit, details of the factorization: U is stored as an
- *> upper triangular band matrix with KL+KU superdiagonals in
- *> rows 1 to KL+KU+1, and the multipliers used during the
- *> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
- *> See below for further details.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (min(M,N))
- *> The pivot indices; for 1 <= i <= min(M,N), row i of the
- *> matrix was interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly
- *> singular, and division by zero will occur if it is used
- *> to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexGBcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The band storage scheme is illustrated by the following example, when
- *> M = N = 6, KL = 2, KU = 1:
- *>
- *> On entry: On exit:
- *>
- *> * * * + + + * * * u14 u25 u36
- *> * * + + + + * * u13 u24 u35 u46
- *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
- *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
- *> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
- *> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
- *>
- *> Array elements marked * are not used by the routine; elements marked
- *> + need not be set on entry, but are required by the routine to store
- *> elements of U, because of fill-in resulting from the row
- *> interchanges.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INFO, KL, KU, LDAB, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- COMPLEX AB( LDAB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE, ZERO
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
- $ ZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, JP, JU, KM, KV
- * ..
- * .. External Functions ..
- INTEGER ICAMAX
- EXTERNAL ICAMAX
- * ..
- * .. External Subroutines ..
- EXTERNAL CGERU, CSCAL, CSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * KV is the number of superdiagonals in the factor U, allowing for
- * fill-in.
- *
- KV = KU + KL
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KL.LT.0 ) THEN
- INFO = -3
- ELSE IF( KU.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KL+KV+1 ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGBTF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Gaussian elimination with partial pivoting
- *
- * Set fill-in elements in columns KU+2 to KV to zero.
- *
- DO 20 J = KU + 2, MIN( KV, N )
- DO 10 I = KV - J + 2, KL
- AB( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- *
- * JU is the index of the last column affected by the current stage
- * of the factorization.
- *
- JU = 1
- *
- DO 40 J = 1, MIN( M, N )
- *
- * Set fill-in elements in column J+KV to zero.
- *
- IF( J+KV.LE.N ) THEN
- DO 30 I = 1, KL
- AB( I, J+KV ) = ZERO
- 30 CONTINUE
- END IF
- *
- * Find pivot and test for singularity. KM is the number of
- * subdiagonal elements in the current column.
- *
- KM = MIN( KL, M-J )
- JP = ICAMAX( KM+1, AB( KV+1, J ), 1 )
- IPIV( J ) = JP + J - 1
- IF( AB( KV+JP, J ).NE.ZERO ) THEN
- JU = MAX( JU, MIN( J+KU+JP-1, N ) )
- *
- * Apply interchange to columns J to JU.
- *
- IF( JP.NE.1 )
- $ CALL CSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
- $ AB( KV+1, J ), LDAB-1 )
- IF( KM.GT.0 ) THEN
- *
- * Compute multipliers.
- *
- CALL CSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
- *
- * Update trailing submatrix within the band.
- *
- IF( JU.GT.J )
- $ CALL CGERU( KM, JU-J, -ONE, AB( KV+2, J ), 1,
- $ AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
- $ LDAB-1 )
- END IF
- ELSE
- *
- * If pivot is zero, set INFO to the index of the pivot
- * unless a zero pivot has already been found.
- *
- IF( INFO.EQ.0 )
- $ INFO = J
- END IF
- 40 CONTINUE
- RETURN
- *
- * End of CGBTF2
- *
- END
|