|
- *> \brief \b CCHKEE
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * PROGRAM CCHKEE
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CCHKEE tests the COMPLEX LAPACK subroutines for the matrix
- *> eigenvalue problem. The test paths in this version are
- *>
- *> NEP (Nonsymmetric Eigenvalue Problem):
- *> Test CGEHRD, CUNGHR, CHSEQR, CTREVC, CHSEIN, and CUNMHR
- *>
- *> SEP (Hermitian Eigenvalue Problem):
- *> Test CHETRD, CUNGTR, CSTEQR, CSTERF, CSTEIN, CSTEDC,
- *> and drivers CHEEV(X), CHBEV(X), CHPEV(X),
- *> CHEEVD, CHBEVD, CHPEVD
- *>
- *> SVD (Singular Value Decomposition):
- *> Test CGEBRD, CUNGBR, and CBDSQR
- *> and the drivers CGESVD, CGESDD
- *>
- *> CEV (Nonsymmetric Eigenvalue/eigenvector Driver):
- *> Test CGEEV
- *>
- *> CES (Nonsymmetric Schur form Driver):
- *> Test CGEES
- *>
- *> CVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
- *> Test CGEEVX
- *>
- *> CSX (Nonsymmetric Schur form Expert Driver):
- *> Test CGEESX
- *>
- *> CGG (Generalized Nonsymmetric Eigenvalue Problem):
- *> Test CGGHD3, CGGBAL, CGGBAK, CHGEQZ, and CTGEVC
- *>
- *> CGS (Generalized Nonsymmetric Schur form Driver):
- *> Test CGGES
- *>
- *> CGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
- *> Test CGGEV
- *>
- *> CGX (Generalized Nonsymmetric Schur form Expert Driver):
- *> Test CGGESX
- *>
- *> CXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
- *> Test CGGEVX
- *>
- *> CSG (Hermitian Generalized Eigenvalue Problem):
- *> Test CHEGST, CHEGV, CHEGVD, CHEGVX, CHPGST, CHPGV, CHPGVD,
- *> CHPGVX, CHBGST, CHBGV, CHBGVD, and CHBGVX
- *>
- *> CHB (Hermitian Band Eigenvalue Problem):
- *> Test CHBTRD
- *>
- *> CBB (Band Singular Value Decomposition):
- *> Test CGBBRD
- *>
- *> CEC (Eigencondition estimation):
- *> Test CTRSYL, CTREXC, CTRSNA, and CTRSEN
- *>
- *> CBL (Balancing a general matrix)
- *> Test CGEBAL
- *>
- *> CBK (Back transformation on a balanced matrix)
- *> Test CGEBAK
- *>
- *> CGL (Balancing a matrix pair)
- *> Test CGGBAL
- *>
- *> CGK (Back transformation on a matrix pair)
- *> Test CGGBAK
- *>
- *> GLM (Generalized Linear Regression Model):
- *> Tests CGGGLM
- *>
- *> GQR (Generalized QR and RQ factorizations):
- *> Tests CGGQRF and CGGRQF
- *>
- *> GSV (Generalized Singular Value Decomposition):
- *> Tests CGGSVD, CGGSVP, CTGSJA, CLAGS2, CLAPLL, and CLAPMT
- *>
- *> CSD (CS decomposition):
- *> Tests CUNCSD
- *>
- *> LSE (Constrained Linear Least Squares):
- *> Tests CGGLSE
- *>
- *> Each test path has a different set of inputs, but the data sets for
- *> the driver routines xEV, xES, xVX, and xSX can be concatenated in a
- *> single input file. The first line of input should contain one of the
- *> 3-character path names in columns 1-3. The number of remaining lines
- *> depends on what is found on the first line.
- *>
- *> The number of matrix types used in testing is often controllable from
- *> the input file. The number of matrix types for each path, and the
- *> test routine that describes them, is as follows:
- *>
- *> Path name(s) Types Test routine
- *>
- *> CHS or NEP 21 CCHKHS
- *> CST or SEP 21 CCHKST (routines)
- *> 18 CDRVST (drivers)
- *> CBD or SVD 16 CCHKBD (routines)
- *> 5 CDRVBD (drivers)
- *> CEV 21 CDRVEV
- *> CES 21 CDRVES
- *> CVX 21 CDRVVX
- *> CSX 21 CDRVSX
- *> CGG 26 CCHKGG (routines)
- *> CGS 26 CDRGES
- *> CGX 5 CDRGSX
- *> CGV 26 CDRGEV
- *> CXV 2 CDRGVX
- *> CSG 21 CDRVSG
- *> CHB 15 CCHKHB
- *> CBB 15 CCHKBB
- *> CEC - CCHKEC
- *> CBL - CCHKBL
- *> CBK - CCHKBK
- *> CGL - CCHKGL
- *> CGK - CCHKGK
- *> GLM 8 CCKGLM
- *> GQR 8 CCKGQR
- *> GSV 8 CCKGSV
- *> CSD 3 CCKCSD
- *> LSE 8 CCKLSE
- *>
- *>-----------------------------------------------------------------------
- *>
- *> NEP input file:
- *>
- *> line 2: NN, INTEGER
- *> Number of values of N.
- *>
- *> line 3: NVAL, INTEGER array, dimension (NN)
- *> The values for the matrix dimension N.
- *>
- *> line 4: NPARMS, INTEGER
- *> Number of values of the parameters NB, NBMIN, NX, NS, and
- *> MAXB.
- *>
- *> line 5: NBVAL, INTEGER array, dimension (NPARMS)
- *> The values for the blocksize NB.
- *>
- *> line 6: NBMIN, INTEGER array, dimension (NPARMS)
- *> The values for the minimum blocksize NBMIN.
- *>
- *> line 7: NXVAL, INTEGER array, dimension (NPARMS)
- *> The values for the crossover point NX.
- *>
- *> line 8: INMIN, INTEGER array, dimension (NPARMS)
- *> LAHQR vs TTQRE crossover point, >= 11
- *>
- *> line 9: INWIN, INTEGER array, dimension (NPARMS)
- *> recommended deflation window size
- *>
- *> line 10: INIBL, INTEGER array, dimension (NPARMS)
- *> nibble crossover point
- *>
- *> line 11: ISHFTS, INTEGER array, dimension (NPARMS)
- *> number of simultaneous shifts)
- *>
- *> line 12: IACC22, INTEGER array, dimension (NPARMS)
- *> select structured matrix multiply: 0, 1 or 2)
- *>
- *> line 13: THRESH
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold. To have all of the test
- *> ratios printed, use THRESH = 0.0 .
- *>
- *> line 14: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 14 was 2:
- *>
- *> line 15: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
- *> the user to specify the matrix types. Each line contains
- *> a 3-character path name in columns 1-3, and the number
- *> of matrix types must be the first nonblank item in columns
- *> 4-80. If the number of matrix types is at least 1 but is
- *> less than the maximum number of possible types, a second
- *> line will be read to get the numbers of the matrix types to
- *> be used. For example,
- *> NEP 21
- *> requests all of the matrix types for the nonsymmetric
- *> eigenvalue problem, while
- *> NEP 4
- *> 9 10 11 12
- *> requests only matrices of type 9, 10, 11, and 12.
- *>
- *> The valid 3-character path names are 'NEP' or 'CHS' for the
- *> nonsymmetric eigenvalue routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> SEP or CSG input file:
- *>
- *> line 2: NN, INTEGER
- *> Number of values of N.
- *>
- *> line 3: NVAL, INTEGER array, dimension (NN)
- *> The values for the matrix dimension N.
- *>
- *> line 4: NPARMS, INTEGER
- *> Number of values of the parameters NB, NBMIN, and NX.
- *>
- *> line 5: NBVAL, INTEGER array, dimension (NPARMS)
- *> The values for the blocksize NB.
- *>
- *> line 6: NBMIN, INTEGER array, dimension (NPARMS)
- *> The values for the minimum blocksize NBMIN.
- *>
- *> line 7: NXVAL, INTEGER array, dimension (NPARMS)
- *> The values for the crossover point NX.
- *>
- *> line 8: THRESH
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 9: TSTCHK, LOGICAL
- *> Flag indicating whether or not to test the LAPACK routines.
- *>
- *> line 10: TSTDRV, LOGICAL
- *> Flag indicating whether or not to test the driver routines.
- *>
- *> line 11: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 12: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 12 was 2:
- *>
- *> line 13: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 13-EOF: Lines specifying matrix types, as for NEP.
- *> The valid 3-character path names are 'SEP' or 'CST' for the
- *> Hermitian eigenvalue routines and driver routines, and
- *> 'CSG' for the routines for the Hermitian generalized
- *> eigenvalue problem.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> SVD input file:
- *>
- *> line 2: NN, INTEGER
- *> Number of values of M and N.
- *>
- *> line 3: MVAL, INTEGER array, dimension (NN)
- *> The values for the matrix row dimension M.
- *>
- *> line 4: NVAL, INTEGER array, dimension (NN)
- *> The values for the matrix column dimension N.
- *>
- *> line 5: NPARMS, INTEGER
- *> Number of values of the parameter NB, NBMIN, NX, and NRHS.
- *>
- *> line 6: NBVAL, INTEGER array, dimension (NPARMS)
- *> The values for the blocksize NB.
- *>
- *> line 7: NBMIN, INTEGER array, dimension (NPARMS)
- *> The values for the minimum blocksize NBMIN.
- *>
- *> line 8: NXVAL, INTEGER array, dimension (NPARMS)
- *> The values for the crossover point NX.
- *>
- *> line 9: NSVAL, INTEGER array, dimension (NPARMS)
- *> The values for the number of right hand sides NRHS.
- *>
- *> line 10: THRESH
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 11: TSTCHK, LOGICAL
- *> Flag indicating whether or not to test the LAPACK routines.
- *>
- *> line 12: TSTDRV, LOGICAL
- *> Flag indicating whether or not to test the driver routines.
- *>
- *> line 13: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 14: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 14 was 2:
- *>
- *> line 15: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 15-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path names are 'SVD' or 'CBD' for both the
- *> SVD routines and the SVD driver routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CEV and CES data files:
- *>
- *> line 1: 'CEV' or 'CES' in columns 1 to 3.
- *>
- *> line 2: NSIZES, INTEGER
- *> Number of sizes of matrices to use. Should be at least 0
- *> and at most 20. If NSIZES = 0, no testing is done
- *> (although the remaining 3 lines are still read).
- *>
- *> line 3: NN, INTEGER array, dimension(NSIZES)
- *> Dimensions of matrices to be tested.
- *>
- *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
- *> These integer parameters determine how blocking is done
- *> (see ILAENV for details)
- *> NB : block size
- *> NBMIN : minimum block size
- *> NX : minimum dimension for blocking
- *> NS : number of shifts in xHSEQR
- *> NBCOL : minimum column dimension for blocking
- *>
- *> line 5: THRESH, REAL
- *> The test threshold against which computed residuals are
- *> compared. Should generally be in the range from 10. to 20.
- *> If it is 0., all test case data will be printed.
- *>
- *> line 6: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 6 was 2:
- *>
- *> line 7: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 8 and following: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'CEV' to test CGEEV, or
- *> 'CES' to test CGEES.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> The CVX data has two parts. The first part is identical to CEV,
- *> and the second part consists of test matrices with precomputed
- *> solutions.
- *>
- *> line 1: 'CVX' in columns 1-3.
- *>
- *> line 2: NSIZES, INTEGER
- *> If NSIZES = 0, no testing of randomly generated examples
- *> is done, but any precomputed examples are tested.
- *>
- *> line 3: NN, INTEGER array, dimension(NSIZES)
- *>
- *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
- *>
- *> line 5: THRESH, REAL
- *>
- *> line 6: NEWSD, INTEGER
- *>
- *> If line 6 was 2:
- *>
- *> line 7: INTEGER array, dimension (4)
- *>
- *> lines 8 and following: The first line contains 'CVX' in columns 1-3
- *> followed by the number of matrix types, possibly with
- *> a second line to specify certain matrix types.
- *> If the number of matrix types = 0, no testing of randomly
- *> generated examples is done, but any precomputed examples
- *> are tested.
- *>
- *> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is
- *> its dimension. The first line contains the dimension N and
- *> ISRT (two integers). ISRT indicates whether the last N lines
- *> are sorted by increasing real part of the eigenvalue
- *> (ISRT=0) or by increasing imaginary part (ISRT=1). The next
- *> N**2 lines contain the matrix rowwise, one entry per line.
- *> The last N lines correspond to each eigenvalue. Each of
- *> these last N lines contains 4 real values: the real part of
- *> the eigenvalues, the imaginary part of the eigenvalue, the
- *> reciprocal condition number of the eigenvalues, and the
- *> reciprocal condition number of the vector eigenvector. The
- *> end of data is indicated by dimension N=0. Even if no data
- *> is to be tested, there must be at least one line containing
- *> N=0.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> The CSX data is like CVX. The first part is identical to CEV, and the
- *> second part consists of test matrices with precomputed solutions.
- *>
- *> line 1: 'CSX' in columns 1-3.
- *>
- *> line 2: NSIZES, INTEGER
- *> If NSIZES = 0, no testing of randomly generated examples
- *> is done, but any precomputed examples are tested.
- *>
- *> line 3: NN, INTEGER array, dimension(NSIZES)
- *>
- *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
- *>
- *> line 5: THRESH, REAL
- *>
- *> line 6: NEWSD, INTEGER
- *>
- *> If line 6 was 2:
- *>
- *> line 7: INTEGER array, dimension (4)
- *>
- *> lines 8 and following: The first line contains 'CSX' in columns 1-3
- *> followed by the number of matrix types, possibly with
- *> a second line to specify certain matrix types.
- *> If the number of matrix types = 0, no testing of randomly
- *> generated examples is done, but any precomputed examples
- *> are tested.
- *>
- *> remaining lines : Each matrix is stored on 3+N**2 lines, where N is
- *> its dimension. The first line contains the dimension N, the
- *> dimension M of an invariant subspace, and ISRT. The second
- *> line contains M integers, identifying the eigenvalues in the
- *> invariant subspace (by their position in a list of
- *> eigenvalues ordered by increasing real part (if ISRT=0) or
- *> by increasing imaginary part (if ISRT=1)). The next N**2
- *> lines contain the matrix rowwise. The last line contains the
- *> reciprocal condition number for the average of the selected
- *> eigenvalues, and the reciprocal condition number for the
- *> corresponding right invariant subspace. The end of data in
- *> indicated by a line containing N=0, M=0, and ISRT = 0. Even
- *> if no data is to be tested, there must be at least one line
- *> containing N=0, M=0 and ISRT=0.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CGG input file:
- *>
- *> line 2: NN, INTEGER
- *> Number of values of N.
- *>
- *> line 3: NVAL, INTEGER array, dimension (NN)
- *> The values for the matrix dimension N.
- *>
- *> line 4: NPARMS, INTEGER
- *> Number of values of the parameters NB, NBMIN, NBCOL, NS, and
- *> MAXB.
- *>
- *> line 5: NBVAL, INTEGER array, dimension (NPARMS)
- *> The values for the blocksize NB.
- *>
- *> line 6: NBMIN, INTEGER array, dimension (NPARMS)
- *> The values for NBMIN, the minimum row dimension for blocks.
- *>
- *> line 7: NSVAL, INTEGER array, dimension (NPARMS)
- *> The values for the number of shifts.
- *>
- *> line 8: MXBVAL, INTEGER array, dimension (NPARMS)
- *> The values for MAXB, used in determining minimum blocksize.
- *>
- *> line 9: IACC22, INTEGER array, dimension (NPARMS)
- *> select structured matrix multiply: 1 or 2)
- *>
- *> line 10: NBCOL, INTEGER array, dimension (NPARMS)
- *> The values for NBCOL, the minimum column dimension for
- *> blocks.
- *>
- *> line 11: THRESH
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 12: TSTCHK, LOGICAL
- *> Flag indicating whether or not to test the LAPACK routines.
- *>
- *> line 13: TSTDRV, LOGICAL
- *> Flag indicating whether or not to test the driver routines.
- *>
- *> line 14: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 15: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 15 was 2:
- *>
- *> line 16: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 17-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'CGG' for the generalized
- *> eigenvalue problem routines and driver routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CGS and CGV input files:
- *>
- *> line 1: 'CGS' or 'CGV' in columns 1 to 3.
- *>
- *> line 2: NN, INTEGER
- *> Number of values of N.
- *>
- *> line 3: NVAL, INTEGER array, dimension(NN)
- *> Dimensions of matrices to be tested.
- *>
- *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
- *> These integer parameters determine how blocking is done
- *> (see ILAENV for details)
- *> NB : block size
- *> NBMIN : minimum block size
- *> NX : minimum dimension for blocking
- *> NS : number of shifts in xHGEQR
- *> NBCOL : minimum column dimension for blocking
- *>
- *> line 5: THRESH, REAL
- *> The test threshold against which computed residuals are
- *> compared. Should generally be in the range from 10. to 20.
- *> If it is 0., all test case data will be printed.
- *>
- *> line 6: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits.
- *>
- *> line 7: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 17 was 2:
- *>
- *> line 7: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 7-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'CGS' for the generalized
- *> eigenvalue problem routines and driver routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CGX input file:
- *> line 1: 'CGX' in columns 1 to 3.
- *>
- *> line 2: N, INTEGER
- *> Value of N.
- *>
- *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
- *> These integer parameters determine how blocking is done
- *> (see ILAENV for details)
- *> NB : block size
- *> NBMIN : minimum block size
- *> NX : minimum dimension for blocking
- *> NS : number of shifts in xHGEQR
- *> NBCOL : minimum column dimension for blocking
- *>
- *> line 4: THRESH, REAL
- *> The test threshold against which computed residuals are
- *> compared. Should generally be in the range from 10. to 20.
- *> Information will be printed about each test for which the
- *> test ratio is greater than or equal to the threshold.
- *>
- *> line 5: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 6: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 6 was 2:
- *>
- *> line 7: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> If line 2 was 0:
- *>
- *> line 7-EOF: Precomputed examples are tested.
- *>
- *> remaining lines : Each example is stored on 3+2*N*N lines, where N is
- *> its dimension. The first line contains the dimension (a
- *> single integer). The next line contains an integer k such
- *> that only the last k eigenvalues will be selected and appear
- *> in the leading diagonal blocks of $A$ and $B$. The next N*N
- *> lines contain the matrix A, one element per line. The next N*N
- *> lines contain the matrix B. The last line contains the
- *> reciprocal of the eigenvalue cluster condition number and the
- *> reciprocal of the deflating subspace (associated with the
- *> selected eigencluster) condition number. The end of data is
- *> indicated by dimension N=0. Even if no data is to be tested,
- *> there must be at least one line containing N=0.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CXV input files:
- *> line 1: 'CXV' in columns 1 to 3.
- *>
- *> line 2: N, INTEGER
- *> Value of N.
- *>
- *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
- *> These integer parameters determine how blocking is done
- *> (see ILAENV for details)
- *> NB : block size
- *> NBMIN : minimum block size
- *> NX : minimum dimension for blocking
- *> NS : number of shifts in xHGEQR
- *> NBCOL : minimum column dimension for blocking
- *>
- *> line 4: THRESH, REAL
- *> The test threshold against which computed residuals are
- *> compared. Should generally be in the range from 10. to 20.
- *> Information will be printed about each test for which the
- *> test ratio is greater than or equal to the threshold.
- *>
- *> line 5: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 6: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 6 was 2:
- *>
- *> line 7: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> If line 2 was 0:
- *>
- *> line 7-EOF: Precomputed examples are tested.
- *>
- *> remaining lines : Each example is stored on 3+2*N*N lines, where N is
- *> its dimension. The first line contains the dimension (a
- *> single integer). The next N*N lines contain the matrix A, one
- *> element per line. The next N*N lines contain the matrix B.
- *> The next line contains the reciprocals of the eigenvalue
- *> condition numbers. The last line contains the reciprocals of
- *> the eigenvector condition numbers. The end of data is
- *> indicated by dimension N=0. Even if no data is to be tested,
- *> there must be at least one line containing N=0.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CHB input file:
- *>
- *> line 2: NN, INTEGER
- *> Number of values of N.
- *>
- *> line 3: NVAL, INTEGER array, dimension (NN)
- *> The values for the matrix dimension N.
- *>
- *> line 4: NK, INTEGER
- *> Number of values of K.
- *>
- *> line 5: KVAL, INTEGER array, dimension (NK)
- *> The values for the matrix dimension K.
- *>
- *> line 6: THRESH
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 7: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 7 was 2:
- *>
- *> line 8: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 8-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'CHB'.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CBB input file:
- *>
- *> line 2: NN, INTEGER
- *> Number of values of M and N.
- *>
- *> line 3: MVAL, INTEGER array, dimension (NN)
- *> The values for the matrix row dimension M.
- *>
- *> line 4: NVAL, INTEGER array, dimension (NN)
- *> The values for the matrix column dimension N.
- *>
- *> line 4: NK, INTEGER
- *> Number of values of K.
- *>
- *> line 5: KVAL, INTEGER array, dimension (NK)
- *> The values for the matrix bandwidth K.
- *>
- *> line 6: NPARMS, INTEGER
- *> Number of values of the parameter NRHS
- *>
- *> line 7: NSVAL, INTEGER array, dimension (NPARMS)
- *> The values for the number of right hand sides NRHS.
- *>
- *> line 8: THRESH
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 9: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 9 was 2:
- *>
- *> line 10: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 10-EOF: Lines specifying matrix types, as for SVD.
- *> The 3-character path name is 'CBB'.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CEC input file:
- *>
- *> line 2: THRESH, REAL
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> lines 3-EOF:
- *>
- *> Input for testing the eigencondition routines consists of a set of
- *> specially constructed test cases and their solutions. The data
- *> format is not intended to be modified by the user.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CBL and CBK input files:
- *>
- *> line 1: 'CBL' in columns 1-3 to test CGEBAL, or 'CBK' in
- *> columns 1-3 to test CGEBAK.
- *>
- *> The remaining lines consist of specially constructed test cases.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CGL and CGK input files:
- *>
- *> line 1: 'CGL' in columns 1-3 to test CGGBAL, or 'CGK' in
- *> columns 1-3 to test CGGBAK.
- *>
- *> The remaining lines consist of specially constructed test cases.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> GLM data file:
- *>
- *> line 1: 'GLM' in columns 1 to 3.
- *>
- *> line 2: NN, INTEGER
- *> Number of values of M, P, and N.
- *>
- *> line 3: MVAL, INTEGER array, dimension(NN)
- *> Values of M (row dimension).
- *>
- *> line 4: PVAL, INTEGER array, dimension(NN)
- *> Values of P (row dimension).
- *>
- *> line 5: NVAL, INTEGER array, dimension(NN)
- *> Values of N (column dimension), note M <= N <= M+P.
- *>
- *> line 6: THRESH, REAL
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 7: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 8: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 8 was 2:
- *>
- *> line 9: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 9-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'GLM' for the generalized
- *> linear regression model routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> GQR data file:
- *>
- *> line 1: 'GQR' in columns 1 to 3.
- *>
- *> line 2: NN, INTEGER
- *> Number of values of M, P, and N.
- *>
- *> line 3: MVAL, INTEGER array, dimension(NN)
- *> Values of M.
- *>
- *> line 4: PVAL, INTEGER array, dimension(NN)
- *> Values of P.
- *>
- *> line 5: NVAL, INTEGER array, dimension(NN)
- *> Values of N.
- *>
- *> line 6: THRESH, REAL
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 7: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 8: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 8 was 2:
- *>
- *> line 9: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 9-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'GQR' for the generalized
- *> QR and RQ routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> GSV data file:
- *>
- *> line 1: 'GSV' in columns 1 to 3.
- *>
- *> line 2: NN, INTEGER
- *> Number of values of M, P, and N.
- *>
- *> line 3: MVAL, INTEGER array, dimension(NN)
- *> Values of M (row dimension).
- *>
- *> line 4: PVAL, INTEGER array, dimension(NN)
- *> Values of P (row dimension).
- *>
- *> line 5: NVAL, INTEGER array, dimension(NN)
- *> Values of N (column dimension).
- *>
- *> line 6: THRESH, REAL
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 7: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 8: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 8 was 2:
- *>
- *> line 9: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 9-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'GSV' for the generalized
- *> SVD routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> CSD data file:
- *>
- *> line 1: 'CSD' in columns 1 to 3.
- *>
- *> line 2: NM, INTEGER
- *> Number of values of M, P, and N.
- *>
- *> line 3: MVAL, INTEGER array, dimension(NM)
- *> Values of M (row and column dimension of orthogonal matrix).
- *>
- *> line 4: PVAL, INTEGER array, dimension(NM)
- *> Values of P (row dimension of top-left block).
- *>
- *> line 5: NVAL, INTEGER array, dimension(NM)
- *> Values of N (column dimension of top-left block).
- *>
- *> line 6: THRESH, REAL
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 7: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 8: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 8 was 2:
- *>
- *> line 9: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 9-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'CSD' for the CSD routine.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> LSE data file:
- *>
- *> line 1: 'LSE' in columns 1 to 3.
- *>
- *> line 2: NN, INTEGER
- *> Number of values of M, P, and N.
- *>
- *> line 3: MVAL, INTEGER array, dimension(NN)
- *> Values of M.
- *>
- *> line 4: PVAL, INTEGER array, dimension(NN)
- *> Values of P.
- *>
- *> line 5: NVAL, INTEGER array, dimension(NN)
- *> Values of N, note P <= N <= P+M.
- *>
- *> line 6: THRESH, REAL
- *> Threshold value for the test ratios. Information will be
- *> printed about each test for which the test ratio is greater
- *> than or equal to the threshold.
- *>
- *> line 7: TSTERR, LOGICAL
- *> Flag indicating whether or not to test the error exits for
- *> the LAPACK routines and driver routines.
- *>
- *> line 8: NEWSD, INTEGER
- *> A code indicating how to set the random number seed.
- *> = 0: Set the seed to a default value before each run
- *> = 1: Initialize the seed to a default value only before the
- *> first run
- *> = 2: Like 1, but use the seed values on the next line
- *>
- *> If line 8 was 2:
- *>
- *> line 9: INTEGER array, dimension (4)
- *> Four integer values for the random number seed.
- *>
- *> lines 9-EOF: Lines specifying matrix types, as for NEP.
- *> The 3-character path name is 'GSV' for the generalized
- *> SVD routines.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> NMAX is currently set to 132 and must be at least 12 for some of the
- *> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter
- *> statements below. For SVD, we assume NRHS may be as big as N. The
- *> parameter NEED is set to 14 to allow for 14 N-by-N matrices for CGG.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2016
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- PROGRAM CCHKEE
- *
- #if defined(_OPENMP)
- use omp_lib
- #endif
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2016
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER NMAX
- PARAMETER ( NMAX = 132 )
- INTEGER NCMAX
- PARAMETER ( NCMAX = 20 )
- INTEGER NEED
- PARAMETER ( NEED = 14 )
- INTEGER LWORK
- PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) )
- INTEGER LIWORK
- PARAMETER ( LIWORK = NMAX*( NMAX+20 ) )
- INTEGER MAXIN
- PARAMETER ( MAXIN = 20 )
- INTEGER MAXT
- PARAMETER ( MAXT = 30 )
- INTEGER NIN, NOUT
- PARAMETER ( NIN = 5, NOUT = 6 )
- * ..
- * .. Local Scalars ..
- LOGICAL CBB, CBK, CBL, CES, CEV, CGG, CGK, CGL, CGS,
- $ CGV, CGX, CHB, CSD, CSX, CVX, CXV, FATAL, GLM,
- $ GQR, GSV, LSE, NEP, SEP, SVD, TSTCHK, TSTDIF,
- $ TSTDRV, TSTERR
- CHARACTER C1
- CHARACTER*3 C3, PATH
- CHARACTER*32 VNAME
- CHARACTER*10 INTSTR
- CHARACTER*80 LINE
- INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
- $ NK, NN, NPARMS, NRHS, NTYPES,
- $ VERS_MAJOR, VERS_MINOR, VERS_PATCH
- INTEGER*4 N_THREADS, ONE_THREAD
- REAL EPS, S1, S2, THRESH, THRSHN
- * ..
- * .. Local Arrays ..
- LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
- INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
- $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
- $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
- $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
- $ PVAL( MAXIN )
- INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
- $ ISHFTS( MAXIN ), IACC22( MAXIN )
- REAL ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ),
- $ RESULT( 500 )
- COMPLEX DC( NMAX, 6 ), TAUA( NMAX ), TAUB( NMAX ),
- $ X( 5*NMAX )
- * ..
- * .. Allocatable Arrays ..
- INTEGER AllocateStatus
- REAL, DIMENSION(:), ALLOCATABLE :: RWORK, S
- COMPLEX, DIMENSION(:), ALLOCATABLE :: WORK
- COMPLEX, DIMENSION(:,:), ALLOCATABLE :: A, B, C
- * ..
- * .. External Functions ..
- LOGICAL LSAMEN
- REAL SECOND, SLAMCH
- EXTERNAL LSAMEN, SECOND, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAREQ, CCHKBB, CCHKBD, CCHKBK, CCHKBL, CCHKEC,
- $ CCHKGG, CCHKGK, CCHKGL, CCHKHB, CCHKHS, CCHKST,
- $ CCKCSD, CCKGLM, CCKGQR, CCKGSV, CCKLSE, CDRGES,
- $ CDRGEV, CDRGSX, CDRGVX, CDRVBD, CDRVES, CDRVEV,
- $ CDRVSG, CDRVST, CDRVSX, CDRVVX, CERRBD,
- $ CERRED, CERRGG, CERRHS, CERRST, ILAVER, XLAENV,
- $ CDRGES3, CDRGEV3,
- $ CCHKST2STG, CDRVST2STG, CCHKHB2STG
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC LEN, MIN
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
- $ SELOPT
- * ..
- * .. Arrays in Common ..
- LOGICAL SELVAL( 20 )
- INTEGER IPARMS( 100 )
- REAL SELWI( 20 ), SELWR( 20 )
- * ..
- * .. Common blocks ..
- COMMON / CENVIR / NPROC, NSHIFT, MAXB
- COMMON / CLAENV / IPARMS
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
- * ..
- * .. Data statements ..
- DATA INTSTR / '0123456789' /
- DATA IOLDSD / 0, 0, 0, 1 /
- * ..
- * .. Allocate memory dynamically ..
- *
- ALLOCATE ( S(NMAX*NMAX), STAT = AllocateStatus )
- IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
- ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus )
- IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
- ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus )
- IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
- ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus )
- IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
- ALLOCATE ( RWORK(LWORK), STAT = AllocateStatus )
- IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
- ALLOCATE ( WORK(LWORK), STAT = AllocateStatus )
- IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
- * ..
- * .. Executable Statements ..
- *
- A = 0.0
- B = 0.0
- C = 0.0
- DC = 0.0
- S1 = SECOND( )
- FATAL = .FALSE.
- NUNIT = NOUT
- *
- * Return to here to read multiple sets of data
- *
- 10 CONTINUE
- *
- * Read the first line and set the 3-character test path
- *
- READ( NIN, FMT = '(A80)', END = 380 )LINE
- PATH = LINE( 1: 3 )
- NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'CHS' )
- SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'CST' ) .OR.
- $ LSAMEN( 3, PATH, 'CSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
- SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'CBD' )
- CEV = LSAMEN( 3, PATH, 'CEV' )
- CES = LSAMEN( 3, PATH, 'CES' )
- CVX = LSAMEN( 3, PATH, 'CVX' )
- CSX = LSAMEN( 3, PATH, 'CSX' )
- CGG = LSAMEN( 3, PATH, 'CGG' )
- CGS = LSAMEN( 3, PATH, 'CGS' )
- CGX = LSAMEN( 3, PATH, 'CGX' )
- CGV = LSAMEN( 3, PATH, 'CGV' )
- CXV = LSAMEN( 3, PATH, 'CXV' )
- CHB = LSAMEN( 3, PATH, 'CHB' )
- CBB = LSAMEN( 3, PATH, 'CBB' )
- GLM = LSAMEN( 3, PATH, 'GLM' )
- GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
- GSV = LSAMEN( 3, PATH, 'GSV' )
- CSD = LSAMEN( 3, PATH, 'CSD' )
- LSE = LSAMEN( 3, PATH, 'LSE' )
- CBL = LSAMEN( 3, PATH, 'CBL' )
- CBK = LSAMEN( 3, PATH, 'CBK' )
- CGL = LSAMEN( 3, PATH, 'CGL' )
- CGK = LSAMEN( 3, PATH, 'CGK' )
- *
- * Report values of parameters.
- *
- IF( PATH.EQ.' ' ) THEN
- GO TO 10
- ELSE IF( NEP ) THEN
- WRITE( NOUT, FMT = 9987 )
- ELSE IF( SEP ) THEN
- WRITE( NOUT, FMT = 9986 )
- ELSE IF( SVD ) THEN
- WRITE( NOUT, FMT = 9985 )
- ELSE IF( CEV ) THEN
- WRITE( NOUT, FMT = 9979 )
- ELSE IF( CES ) THEN
- WRITE( NOUT, FMT = 9978 )
- ELSE IF( CVX ) THEN
- WRITE( NOUT, FMT = 9977 )
- ELSE IF( CSX ) THEN
- WRITE( NOUT, FMT = 9976 )
- ELSE IF( CGG ) THEN
- WRITE( NOUT, FMT = 9975 )
- ELSE IF( CGS ) THEN
- WRITE( NOUT, FMT = 9964 )
- ELSE IF( CGX ) THEN
- WRITE( NOUT, FMT = 9965 )
- ELSE IF( CGV ) THEN
- WRITE( NOUT, FMT = 9963 )
- ELSE IF( CXV ) THEN
- WRITE( NOUT, FMT = 9962 )
- ELSE IF( CHB ) THEN
- WRITE( NOUT, FMT = 9974 )
- ELSE IF( CBB ) THEN
- WRITE( NOUT, FMT = 9967 )
- ELSE IF( GLM ) THEN
- WRITE( NOUT, FMT = 9971 )
- ELSE IF( GQR ) THEN
- WRITE( NOUT, FMT = 9970 )
- ELSE IF( GSV ) THEN
- WRITE( NOUT, FMT = 9969 )
- ELSE IF( CSD ) THEN
- WRITE( NOUT, FMT = 9960 )
- ELSE IF( LSE ) THEN
- WRITE( NOUT, FMT = 9968 )
- ELSE IF( CBL ) THEN
- *
- * CGEBAL: Balancing
- *
- CALL CCHKBL( NIN, NOUT )
- GO TO 380
- ELSE IF( CBK ) THEN
- *
- * CGEBAK: Back transformation
- *
- CALL CCHKBK( NIN, NOUT )
- GO TO 380
- ELSE IF( CGL ) THEN
- *
- * CGGBAL: Balancing
- *
- CALL CCHKGL( NIN, NOUT )
- GO TO 380
- ELSE IF( CGK ) THEN
- *
- * CGGBAK: Back transformation
- *
- CALL CCHKGK( NIN, NOUT )
- GO TO 380
- ELSE IF( LSAMEN( 3, PATH, 'CEC' ) ) THEN
- *
- * CEC: Eigencondition estimation
- *
- READ( NIN, FMT = * )THRESH
- CALL XLAENV( 1, 1 )
- CALL XLAENV( 12, 1 )
- TSTERR = .TRUE.
- CALL CCHKEC( THRESH, TSTERR, NIN, NOUT )
- GO TO 380
- ELSE
- WRITE( NOUT, FMT = 9992 )PATH
- GO TO 380
- END IF
- CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
- WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
- WRITE( NOUT, FMT = 9984 )
- *
- * Read the number of values of M, P, and N.
- *
- READ( NIN, FMT = * )NN
- IF( NN.LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
- NN = 0
- FATAL = .TRUE.
- ELSE IF( NN.GT.MAXIN ) THEN
- WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
- NN = 0
- FATAL = .TRUE.
- END IF
- *
- * Read the values of M
- *
- IF( .NOT.( CGX .OR. CXV ) ) THEN
- READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
- IF( SVD ) THEN
- VNAME = ' M '
- ELSE
- VNAME = ' N '
- END IF
- DO 20 I = 1, NN
- IF( MVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( MVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 20 CONTINUE
- WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
- END IF
- *
- * Read the values of P
- *
- IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
- READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
- DO 30 I = 1, NN
- IF( PVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( PVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 30 CONTINUE
- WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
- END IF
- *
- * Read the values of N
- *
- IF( SVD .OR. CBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
- $ LSE ) THEN
- READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
- DO 40 I = 1, NN
- IF( NVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( NVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 40 CONTINUE
- ELSE
- DO 50 I = 1, NN
- NVAL( I ) = MVAL( I )
- 50 CONTINUE
- END IF
- IF( .NOT.( CGX .OR. CXV ) ) THEN
- WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
- ELSE
- WRITE( NOUT, FMT = 9983 )'N: ', NN
- END IF
- *
- * Read the number of values of K, followed by the values of K
- *
- IF( CHB .OR. CBB ) THEN
- READ( NIN, FMT = * )NK
- READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
- DO 60 I = 1, NK
- IF( KVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( KVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 60 CONTINUE
- WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
- END IF
- *
- IF( CEV .OR. CES .OR. CVX .OR. CSX ) THEN
- *
- * For the nonsymmetric QR driver routines, only one set of
- * parameters is allowed.
- *
- READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
- $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
- IF( NBVAL( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( NBMIN( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( NXVAL( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( INMIN( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( INWIN( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( INIBL( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( IACC22( 1 ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
- FATAL = .TRUE.
- END IF
- CALL XLAENV( 1, NBVAL( 1 ) )
- CALL XLAENV( 2, NBMIN( 1 ) )
- CALL XLAENV( 3, NXVAL( 1 ) )
- CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
- CALL XLAENV(13, INWIN( 1 ) )
- CALL XLAENV(14, INIBL( 1 ) )
- CALL XLAENV(15, ISHFTS( 1 ) )
- CALL XLAENV(16, IACC22( 1 ) )
- WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
- WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
- WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
- WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
- WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
- WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
- WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
- WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
- *
- ELSE IF( CGS .OR. CGX .OR. CGV .OR. CXV ) THEN
- *
- * For the nonsymmetric generalized driver routines, only one set of
- * parameters is allowed.
- *
- READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
- $ NSVAL( 1 ), MXBVAL( 1 )
- IF( NBVAL( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( NBMIN( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( NXVAL( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
- FATAL = .TRUE.
- ELSE IF( NSVAL( 1 ).LT.2 ) THEN
- WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
- FATAL = .TRUE.
- ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
- FATAL = .TRUE.
- END IF
- CALL XLAENV( 1, NBVAL( 1 ) )
- CALL XLAENV( 2, NBMIN( 1 ) )
- CALL XLAENV( 3, NXVAL( 1 ) )
- CALL XLAENV( 4, NSVAL( 1 ) )
- CALL XLAENV( 8, MXBVAL( 1 ) )
- WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
- WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
- WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
- WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
- WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
- ELSE IF( .NOT.CHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
- $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
- *
- * For the other paths, the number of parameters can be varied
- * from the input file. Read the number of parameter values.
- *
- READ( NIN, FMT = * )NPARMS
- IF( NPARMS.LT.1 ) THEN
- WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
- NPARMS = 0
- FATAL = .TRUE.
- ELSE IF( NPARMS.GT.MAXIN ) THEN
- WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
- NPARMS = 0
- FATAL = .TRUE.
- END IF
- *
- * Read the values of NB
- *
- IF( .NOT.CBB ) THEN
- READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
- DO 70 I = 1, NPARMS
- IF( NBVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( NBVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 70 CONTINUE
- WRITE( NOUT, FMT = 9983 )'NB: ',
- $ ( NBVAL( I ), I = 1, NPARMS )
- END IF
- *
- * Read the values of NBMIN
- *
- IF( NEP .OR. SEP .OR. SVD .OR. CGG ) THEN
- READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
- DO 80 I = 1, NPARMS
- IF( NBMIN( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
- FATAL = .TRUE.
- ELSE IF( NBMIN( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
- FATAL = .TRUE.
- END IF
- 80 CONTINUE
- WRITE( NOUT, FMT = 9983 )'NBMIN:',
- $ ( NBMIN( I ), I = 1, NPARMS )
- ELSE
- DO 90 I = 1, NPARMS
- NBMIN( I ) = 1
- 90 CONTINUE
- END IF
- *
- * Read the values of NX
- *
- IF( NEP .OR. SEP .OR. SVD ) THEN
- READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
- DO 100 I = 1, NPARMS
- IF( NXVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( NXVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 100 CONTINUE
- WRITE( NOUT, FMT = 9983 )'NX: ',
- $ ( NXVAL( I ), I = 1, NPARMS )
- ELSE
- DO 110 I = 1, NPARMS
- NXVAL( I ) = 1
- 110 CONTINUE
- END IF
- *
- * Read the values of NSHIFT (if CGG) or NRHS (if SVD
- * or CBB).
- *
- IF( SVD .OR. CBB .OR. CGG ) THEN
- READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
- DO 120 I = 1, NPARMS
- IF( NSVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( NSVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 120 CONTINUE
- WRITE( NOUT, FMT = 9983 )'NS: ',
- $ ( NSVAL( I ), I = 1, NPARMS )
- ELSE
- DO 130 I = 1, NPARMS
- NSVAL( I ) = 1
- 130 CONTINUE
- END IF
- *
- * Read the values for MAXB.
- *
- IF( CGG ) THEN
- READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
- DO 140 I = 1, NPARMS
- IF( MXBVAL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
- FATAL = .TRUE.
- ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 140 CONTINUE
- WRITE( NOUT, FMT = 9983 )'MAXB: ',
- $ ( MXBVAL( I ), I = 1, NPARMS )
- ELSE
- DO 150 I = 1, NPARMS
- MXBVAL( I ) = 1
- 150 CONTINUE
- END IF
- *
- * Read the values for INMIN.
- *
- IF( NEP ) THEN
- READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
- DO 540 I = 1, NPARMS
- IF( INMIN( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
- FATAL = .TRUE.
- END IF
- 540 CONTINUE
- WRITE( NOUT, FMT = 9983 )'INMIN: ',
- $ ( INMIN( I ), I = 1, NPARMS )
- ELSE
- DO 550 I = 1, NPARMS
- INMIN( I ) = 1
- 550 CONTINUE
- END IF
- *
- * Read the values for INWIN.
- *
- IF( NEP ) THEN
- READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
- DO 560 I = 1, NPARMS
- IF( INWIN( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
- FATAL = .TRUE.
- END IF
- 560 CONTINUE
- WRITE( NOUT, FMT = 9983 )'INWIN: ',
- $ ( INWIN( I ), I = 1, NPARMS )
- ELSE
- DO 570 I = 1, NPARMS
- INWIN( I ) = 1
- 570 CONTINUE
- END IF
- *
- * Read the values for INIBL.
- *
- IF( NEP ) THEN
- READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
- DO 580 I = 1, NPARMS
- IF( INIBL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
- FATAL = .TRUE.
- END IF
- 580 CONTINUE
- WRITE( NOUT, FMT = 9983 )'INIBL: ',
- $ ( INIBL( I ), I = 1, NPARMS )
- ELSE
- DO 590 I = 1, NPARMS
- INIBL( I ) = 1
- 590 CONTINUE
- END IF
- *
- * Read the values for ISHFTS.
- *
- IF( NEP ) THEN
- READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
- DO 600 I = 1, NPARMS
- IF( ISHFTS( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
- FATAL = .TRUE.
- END IF
- 600 CONTINUE
- WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
- $ ( ISHFTS( I ), I = 1, NPARMS )
- ELSE
- DO 610 I = 1, NPARMS
- ISHFTS( I ) = 1
- 610 CONTINUE
- END IF
- *
- * Read the values for IACC22.
- *
- IF( NEP .OR. CGG ) THEN
- READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
- DO 620 I = 1, NPARMS
- IF( IACC22( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
- FATAL = .TRUE.
- END IF
- 620 CONTINUE
- WRITE( NOUT, FMT = 9983 )'IACC22: ',
- $ ( IACC22( I ), I = 1, NPARMS )
- ELSE
- DO 630 I = 1, NPARMS
- IACC22( I ) = 1
- 630 CONTINUE
- END IF
- *
- * Read the values for NBCOL.
- *
- IF( CGG ) THEN
- READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
- DO 160 I = 1, NPARMS
- IF( NBCOL( I ).LT.0 ) THEN
- WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
- FATAL = .TRUE.
- ELSE IF( NBCOL( I ).GT.NMAX ) THEN
- WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
- FATAL = .TRUE.
- END IF
- 160 CONTINUE
- WRITE( NOUT, FMT = 9983 )'NBCOL:',
- $ ( NBCOL( I ), I = 1, NPARMS )
- ELSE
- DO 170 I = 1, NPARMS
- NBCOL( I ) = 1
- 170 CONTINUE
- END IF
- END IF
- *
- * Calculate and print the machine dependent constants.
- *
- WRITE( NOUT, FMT = * )
- EPS = SLAMCH( 'Underflow threshold' )
- WRITE( NOUT, FMT = 9981 )'underflow', EPS
- EPS = SLAMCH( 'Overflow threshold' )
- WRITE( NOUT, FMT = 9981 )'overflow ', EPS
- EPS = SLAMCH( 'Epsilon' )
- WRITE( NOUT, FMT = 9981 )'precision', EPS
- *
- * Read the threshold value for the test ratios.
- *
- READ( NIN, FMT = * )THRESH
- WRITE( NOUT, FMT = 9982 )THRESH
- IF( SEP .OR. SVD .OR. CGG ) THEN
- *
- * Read the flag that indicates whether to test LAPACK routines.
- *
- READ( NIN, FMT = * )TSTCHK
- *
- * Read the flag that indicates whether to test driver routines.
- *
- READ( NIN, FMT = * )TSTDRV
- END IF
- *
- * Read the flag that indicates whether to test the error exits.
- *
- READ( NIN, FMT = * )TSTERR
- *
- * Read the code describing how to set the random number seed.
- *
- READ( NIN, FMT = * )NEWSD
- *
- * If NEWSD = 2, read another line with 4 integers for the seed.
- *
- IF( NEWSD.EQ.2 )
- $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
- *
- DO 180 I = 1, 4
- ISEED( I ) = IOLDSD( I )
- 180 CONTINUE
- *
- IF( FATAL ) THEN
- WRITE( NOUT, FMT = 9999 )
- STOP
- END IF
- *
- * Read the input lines indicating the test path and its parameters.
- * The first three characters indicate the test path, and the number
- * of test matrix types must be the first nonblank item in columns
- * 4-80.
- *
- 190 CONTINUE
- *
- IF( .NOT.( CGX .OR. CXV ) ) THEN
- *
- 200 CONTINUE
- READ( NIN, FMT = '(A80)', END = 380 )LINE
- C3 = LINE( 1: 3 )
- LENP = LEN( LINE )
- I = 3
- ITMP = 0
- I1 = 0
- 210 CONTINUE
- I = I + 1
- IF( I.GT.LENP ) THEN
- IF( I1.GT.0 ) THEN
- GO TO 240
- ELSE
- NTYPES = MAXT
- GO TO 240
- END IF
- END IF
- IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
- I1 = I
- C1 = LINE( I1: I1 )
- *
- * Check that a valid integer was read
- *
- DO 220 K = 1, 10
- IF( C1.EQ.INTSTR( K: K ) ) THEN
- IC = K - 1
- GO TO 230
- END IF
- 220 CONTINUE
- WRITE( NOUT, FMT = 9991 )I, LINE
- GO TO 200
- 230 CONTINUE
- ITMP = 10*ITMP + IC
- GO TO 210
- ELSE IF( I1.GT.0 ) THEN
- GO TO 240
- ELSE
- GO TO 210
- END IF
- 240 CONTINUE
- NTYPES = ITMP
- *
- * Skip the tests if NTYPES is <= 0.
- *
- IF( .NOT.( CEV .OR. CES .OR. CVX .OR. CSX .OR. CGV .OR.
- $ CGS ) .AND. NTYPES.LE.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- GO TO 200
- END IF
- *
- ELSE
- IF( CGX )
- $ C3 = 'CGX'
- IF( CXV )
- $ C3 = 'CXV'
- END IF
- *
- * Reset the random number seed.
- *
- IF( NEWSD.EQ.0 ) THEN
- DO 250 K = 1, 4
- ISEED( K ) = IOLDSD( K )
- 250 CONTINUE
- END IF
- *
- IF( LSAMEN( 3, C3, 'CHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
- *
- * -------------------------------------
- * NEP: Nonsymmetric Eigenvalue Problem
- * -------------------------------------
- * Vary the parameters
- * NB = block size
- * NBMIN = minimum block size
- * NX = crossover point
- * NS = number of shifts
- * MAXB = minimum submatrix size
- *
- MAXTYP = 21
- NTYPES = MIN( MAXTYP, NTYPES )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL XLAENV( 1, 1 )
- IF( TSTERR )
- $ CALL CERRHS( 'CHSEQR', NOUT )
- DO 270 I = 1, NPARMS
- CALL XLAENV( 1, NBVAL( I ) )
- CALL XLAENV( 2, NBMIN( I ) )
- CALL XLAENV( 3, NXVAL( I ) )
- CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
- CALL XLAENV(13, INWIN( I ) )
- CALL XLAENV(14, INIBL( I ) )
- CALL XLAENV(15, ISHFTS( I ) )
- CALL XLAENV(16, IACC22( I ) )
- *
- IF( NEWSD.EQ.0 ) THEN
- DO 260 K = 1, 4
- ISEED( K ) = IOLDSD( K )
- 260 CONTINUE
- END IF
- WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
- $ NXVAL( I ), MAX( 11, INMIN(I)),
- $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
- CALL CCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
- $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
- $ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ),
- $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
- $ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK,
- $ RESULT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCHKHS', INFO
- 270 CONTINUE
- *
- ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' )
- $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
- *
- * ----------------------------------
- * SEP: Symmetric Eigenvalue Problem
- * ----------------------------------
- * Vary the parameters
- * NB = block size
- * NBMIN = minimum block size
- * NX = crossover point
- *
- MAXTYP = 21
- NTYPES = MIN( MAXTYP, NTYPES )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL XLAENV( 1, 1 )
- CALL XLAENV( 9, 25 )
- IF( TSTERR ) THEN
- #if defined(_OPENMP)
- N_THREADS = OMP_GET_MAX_THREADS()
- ONE_THREAD = 1
- CALL OMP_SET_NUM_THREADS(ONE_THREAD)
- #endif
- CALL CERRST( 'CST', NOUT )
- #if defined(_OPENMP)
- CALL OMP_SET_NUM_THREADS(N_THREADS)
- #endif
- END IF
- DO 290 I = 1, NPARMS
- CALL XLAENV( 1, NBVAL( I ) )
- CALL XLAENV( 2, NBMIN( I ) )
- CALL XLAENV( 3, NXVAL( I ) )
- *
- IF( NEWSD.EQ.0 ) THEN
- DO 280 K = 1, 4
- ISEED( K ) = IOLDSD( K )
- 280 CONTINUE
- END IF
- WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
- $ NXVAL( I )
- IF( TSTCHK ) THEN
- IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
- CALL CCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
- $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
- $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
- $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
- $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
- $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
- $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
- $ RESULT, INFO )
- ELSE
- CALL CCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
- $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
- $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
- $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
- $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
- $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
- $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
- $ RESULT, INFO )
- ENDIF
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCHKST', INFO
- END IF
- IF( TSTDRV ) THEN
- IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
- CALL CDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
- $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
- $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
- $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
- $ LWORK, IWORK, LIWORK, RESULT, INFO )
- ELSE
- CALL CDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
- $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
- $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
- $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
- $ LWORK, IWORK, LIWORK, RESULT, INFO )
- ENDIF
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRVST', INFO
- END IF
- 290 CONTINUE
- *
- ELSE IF( LSAMEN( 3, C3, 'CSG' ) ) THEN
- *
- * ----------------------------------------------
- * CSG: Hermitian Generalized Eigenvalue Problem
- * ----------------------------------------------
- * Vary the parameters
- * NB = block size
- * NBMIN = minimum block size
- * NX = crossover point
- *
- MAXTYP = 21
- NTYPES = MIN( MAXTYP, NTYPES )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL XLAENV( 9, 25 )
- DO 310 I = 1, NPARMS
- CALL XLAENV( 1, NBVAL( I ) )
- CALL XLAENV( 2, NBMIN( I ) )
- CALL XLAENV( 3, NXVAL( I ) )
- *
- IF( NEWSD.EQ.0 ) THEN
- DO 300 K = 1, 4
- ISEED( K ) = IOLDSD( K )
- 300 CONTINUE
- END IF
- WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
- $ NXVAL( I )
- IF( TSTCHK ) THEN
- * CALL CDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- * $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
- * $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
- * $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
- * $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
- * $ INFO )
- CALL CDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
- $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX,
- $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
- $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK,
- $ IWORK, LIWORK, RESULT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRVSG', INFO
- END IF
- 310 CONTINUE
- *
- ELSE IF( LSAMEN( 3, C3, 'CBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
- *
- * ----------------------------------
- * SVD: Singular Value Decomposition
- * ----------------------------------
- * Vary the parameters
- * NB = block size
- * NBMIN = minimum block size
- * NX = crossover point
- * NRHS = number of right hand sides
- *
- MAXTYP = 16
- NTYPES = MIN( MAXTYP, NTYPES )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL XLAENV( 9, 25 )
- *
- * Test the error exits
- *
- CALL XLAENV( 1, 1 )
- IF( TSTERR .AND. TSTCHK )
- $ CALL CERRBD( 'CBD', NOUT )
- IF( TSTERR .AND. TSTDRV )
- $ CALL CERRED( 'CBD', NOUT )
- *
- DO 330 I = 1, NPARMS
- NRHS = NSVAL( I )
- CALL XLAENV( 1, NBVAL( I ) )
- CALL XLAENV( 2, NBMIN( I ) )
- CALL XLAENV( 3, NXVAL( I ) )
- IF( NEWSD.EQ.0 ) THEN
- DO 320 K = 1, 4
- ISEED( K ) = IOLDSD( K )
- 320 CONTINUE
- END IF
- WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
- $ NXVAL( I ), NRHS
- IF( TSTCHK ) THEN
- CALL CCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
- $ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ),
- $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ),
- $ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ),
- $ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ),
- $ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCHKBD', INFO
- END IF
- IF( TSTDRV )
- $ CALL CDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
- $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
- $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
- $ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ),
- $ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT,
- $ INFO )
- 330 CONTINUE
- *
- ELSE IF( LSAMEN( 3, C3, 'CEV' ) ) THEN
- *
- * --------------------------------------------
- * CEV: Nonsymmetric Eigenvalue Problem Driver
- * CGEEV (eigenvalues and eigenvectors)
- * --------------------------------------------
- *
- MAXTYP = 21
- NTYPES = MIN( MAXTYP, NTYPES )
- IF( NTYPES.LE.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRED( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL CDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
- $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
- $ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK,
- $ IWORK, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CGEEV', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
- GO TO 10
- *
- ELSE IF( LSAMEN( 3, C3, 'CES' ) ) THEN
- *
- * --------------------------------------------
- * CES: Nonsymmetric Eigenvalue Problem Driver
- * CGEES (Schur form)
- * --------------------------------------------
- *
- MAXTYP = 21
- NTYPES = MIN( MAXTYP, NTYPES )
- IF( NTYPES.LE.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRED( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL CDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
- $ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX,
- $ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK,
- $ INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CGEES', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
- GO TO 10
- *
- ELSE IF( LSAMEN( 3, C3, 'CVX' ) ) THEN
- *
- * --------------------------------------------------------------
- * CVX: Nonsymmetric Eigenvalue Problem Expert Driver
- * CGEEVX (eigenvalues, eigenvectors and condition numbers)
- * --------------------------------------------------------------
- *
- MAXTYP = 21
- NTYPES = MIN( MAXTYP, NTYPES )
- IF( NTYPES.LT.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRED( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL CDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
- $ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
- $ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
- $ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
- $ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK,
- $ RWORK, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CGEEVX', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
- GO TO 10
- *
- ELSE IF( LSAMEN( 3, C3, 'CSX' ) ) THEN
- *
- * ---------------------------------------------------
- * CSX: Nonsymmetric Eigenvalue Problem Expert Driver
- * CGEESX (Schur form and condition numbers)
- * ---------------------------------------------------
- *
- MAXTYP = 21
- NTYPES = MIN( MAXTYP, NTYPES )
- IF( NTYPES.LT.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRED( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL CDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
- $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ),
- $ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK,
- $ LOGWRK, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CGEESX', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
- GO TO 10
- *
- ELSE IF( LSAMEN( 3, C3, 'CGG' ) ) THEN
- *
- * -------------------------------------------------
- * CGG: Generalized Nonsymmetric Eigenvalue Problem
- * -------------------------------------------------
- * Vary the parameters
- * NB = block size
- * NBMIN = minimum block size
- * NS = number of shifts
- * MAXB = minimum submatrix size
- * IACC22: structured matrix multiply
- * NBCOL = minimum column dimension for blocks
- *
- MAXTYP = 26
- NTYPES = MIN( MAXTYP, NTYPES )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL XLAENV(1,1)
- IF( TSTCHK .AND. TSTERR )
- $ CALL CERRGG( C3, NOUT )
- DO 350 I = 1, NPARMS
- CALL XLAENV( 1, NBVAL( I ) )
- CALL XLAENV( 2, NBMIN( I ) )
- CALL XLAENV( 4, NSVAL( I ) )
- CALL XLAENV( 8, MXBVAL( I ) )
- CALL XLAENV( 16, IACC22( I ) )
- CALL XLAENV( 5, NBCOL( I ) )
- *
- IF( NEWSD.EQ.0 ) THEN
- DO 340 K = 1, 4
- ISEED( K ) = IOLDSD( K )
- 340 CONTINUE
- END IF
- WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
- $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I )
- TSTDIF = .FALSE.
- THRSHN = 10.
- IF( TSTCHK ) THEN
- CALL CCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
- $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
- $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
- $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
- $ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ),
- $ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK,
- $ LWORK, RWORK, LOGWRK, RESULT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCHKGG', INFO
- END IF
- 350 CONTINUE
- *
- ELSE IF( LSAMEN( 3, C3, 'CGS' ) ) THEN
- *
- * -------------------------------------------------
- * CGS: Generalized Nonsymmetric Eigenvalue Problem
- * CGGES (Schur form)
- * -------------------------------------------------
- *
- MAXTYP = 26
- NTYPES = MIN( MAXTYP, NTYPES )
- IF( NTYPES.LE.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRGG( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL CDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
- $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
- $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
- $ RESULT, LOGWRK, INFO )
- *
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRGES', INFO
- *
- * Blocked version
- *
- CALL XLAENV(16,2)
- CALL CDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
- $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
- $ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
- $ RESULT, LOGWRK, INFO )
- *
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRGES3', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
-
- GO TO 10
- *
- ELSE IF( CGX ) THEN
- *
- * -------------------------------------------------
- * CGX Generalized Nonsymmetric Eigenvalue Problem
- * CGGESX (Schur form and condition numbers)
- * -------------------------------------------------
- *
- MAXTYP = 5
- NTYPES = MAXTYP
- IF( NN.LT.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRGG( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL XLAENV( 5, 2 )
- CALL CDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
- $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
- $ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C,
- $ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK,
- $ LIWORK, LOGWRK, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRGSX', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
- GO TO 10
- *
- ELSE IF( LSAMEN( 3, C3, 'CGV' ) ) THEN
- *
- * -------------------------------------------------
- * CGV: Generalized Nonsymmetric Eigenvalue Problem
- * CGGEV (Eigenvalue/vector form)
- * -------------------------------------------------
- *
- MAXTYP = 26
- NTYPES = MIN( MAXTYP, NTYPES )
- IF( NTYPES.LE.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRGG( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL CDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
- $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
- $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
- $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
- $ RESULT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRGEV', INFO
- *
- * Blocked version
- *
- CALL XLAENV(16,2)
- CALL CDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
- $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
- $ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
- $ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
- $ RESULT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRGEV3', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
- GO TO 10
- *
- ELSE IF( CXV ) THEN
- *
- * -------------------------------------------------
- * CXV: Generalized Nonsymmetric Eigenvalue Problem
- * CGGEVX (eigenvalue/vector with condition numbers)
- * -------------------------------------------------
- *
- MAXTYP = 2
- NTYPES = MAXTYP
- IF( NN.LT.0 ) THEN
- WRITE( NOUT, FMT = 9990 )C3
- ELSE
- IF( TSTERR )
- $ CALL CERRGG( C3, NOUT )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- CALL CDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
- $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ),
- $ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ),
- $ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
- $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK,
- $ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT,
- $ LOGWRK, INFO )
- *
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CDRGVX', INFO
- END IF
- WRITE( NOUT, FMT = 9973 )
- GO TO 10
- *
- ELSE IF( LSAMEN( 3, C3, 'CHB' ) ) THEN
- *
- * ------------------------------
- * CHB: Hermitian Band Reduction
- * ------------------------------
- *
- MAXTYP = 15
- NTYPES = MIN( MAXTYP, NTYPES )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- IF( TSTERR ) THEN
- #if defined(_OPENMP)
- N_THREADS = OMP_GET_MAX_THREADS()
- ONE_THREAD = 1
- CALL OMP_SET_NUM_THREADS(ONE_THREAD)
- #endif
- CALL CERRST( 'CHB', NOUT )
- #if defined(_OPENMP)
- CALL OMP_SET_NUM_THREADS(N_THREADS)
- #endif
- END IF
- * CALL CCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- * $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
- * $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
- * $ INFO )
- CALL CCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
- $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ),
- $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ),
- $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
- $ INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCHKHB', INFO
- *
- ELSE IF( LSAMEN( 3, C3, 'CBB' ) ) THEN
- *
- * ------------------------------
- * CBB: General Band Reduction
- * ------------------------------
- *
- MAXTYP = 15
- NTYPES = MIN( MAXTYP, NTYPES )
- CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
- DO 370 I = 1, NPARMS
- NRHS = NSVAL( I )
- *
- IF( NEWSD.EQ.0 ) THEN
- DO 360 K = 1, 4
- ISEED( K ) = IOLDSD( K )
- 360 CONTINUE
- END IF
- WRITE( NOUT, FMT = 9966 )C3, NRHS
- CALL CCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
- $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
- $ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ),
- $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
- $ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT,
- $ INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCHKBB', INFO
- 370 CONTINUE
- *
- ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
- *
- * -----------------------------------------
- * GLM: Generalized Linear Regression Model
- * -----------------------------------------
- *
- CALL XLAENV( 1, 1 )
- IF( TSTERR )
- $ CALL CERRGG( 'GLM', NOUT )
- CALL CCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX,
- $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
- $ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCKGLM', INFO
- *
- ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
- *
- * ------------------------------------------
- * GQR: Generalized QR and RQ factorizations
- * ------------------------------------------
- *
- CALL XLAENV( 1, 1 )
- IF( TSTERR )
- $ CALL CERRGG( 'GQR', NOUT )
- CALL CCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
- $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
- $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
- $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN,
- $ NOUT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCKGQR', INFO
- *
- ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
- *
- * ----------------------------------------------
- * GSV: Generalized Singular Value Decomposition
- * ----------------------------------------------
- *
- CALL XLAENV(1,1)
- IF( TSTERR )
- $ CALL CERRGG( 'GSV', NOUT )
- CALL CCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
- $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
- $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA,
- $ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT,
- $ INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCKGSV', INFO
- *
- ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
- *
- * ----------------------------------------------
- * CSD: CS Decomposition
- * ----------------------------------------------
- *
- CALL XLAENV(1,1)
- IF( TSTERR )
- $ CALL CERRGG( 'CSD', NOUT )
- CALL CCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
- $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
- $ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK,
- $ DR( 1, 1 ), NIN, NOUT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCKCSD', INFO
- *
- ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
- *
- * --------------------------------------
- * LSE: Constrained Linear Least Squares
- * --------------------------------------
- *
- CALL XLAENV( 1, 1 )
- IF( TSTERR )
- $ CALL CERRGG( 'LSE', NOUT )
- CALL CCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
- $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
- $ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
- IF( INFO.NE.0 )
- $ WRITE( NOUT, FMT = 9980 )'CCKLSE', INFO
- ELSE
- WRITE( NOUT, FMT = * )
- WRITE( NOUT, FMT = * )
- WRITE( NOUT, FMT = 9992 )C3
- END IF
- IF( .NOT.( CGX .OR. CXV ) )
- $ GO TO 190
- 380 CONTINUE
- WRITE( NOUT, FMT = 9994 )
- S2 = SECOND( )
- WRITE( NOUT, FMT = 9993 )S2 - S1
- *
- DEALLOCATE (S, STAT = AllocateStatus)
- DEALLOCATE (A, STAT = AllocateStatus)
- DEALLOCATE (B, STAT = AllocateStatus)
- DEALLOCATE (C, STAT = AllocateStatus)
- DEALLOCATE (RWORK, STAT = AllocateStatus)
- DEALLOCATE (WORK, STAT = AllocateStatus)
- *
- 9999 FORMAT( / ' Execution not attempted due to input errors' )
- 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
- 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
- $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 )
- 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
- $ ', NRHS =', I4 )
- 9994 FORMAT( / / ' End of tests' )
- 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
- 9992 FORMAT( 1X, A3, ': Unrecognized path name' )
- 9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
- $ ' of input', ' line:', / A79 )
- 9990 FORMAT( / / 1X, A3, ' routines were not tested' )
- 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
- $ I6 )
- 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
- $ I6 )
- 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
- 9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' )
- 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
- 9984 FORMAT( / ' The following parameter values will be used:' )
- 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
- 9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
- $ 'less than', F8.2, / )
- 9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 )
- 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
- 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
- $ / ' CGEEV (eigenvalues and eigevectors)' )
- 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
- $ / ' CGEES (Schur form)' )
- 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
- $ ' Driver', / ' CGEEVX (eigenvalues, eigenvectors and',
- $ ' condition numbers)' )
- 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
- $ ' Driver', / ' CGEESX (Schur form and condition',
- $ ' numbers)' )
- 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
- $ 'Problem routines' )
- 9974 FORMAT( ' Tests of CHBTRD', / ' (reduction of a Hermitian band ',
- $ 'matrix to real tridiagonal form)' )
- 9973 FORMAT( / 1X, 71( '-' ) )
- 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
- 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
- $ 'routines' )
- 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
- 9969 FORMAT( / ' Tests of the Generalized Singular Value',
- $ ' Decomposition routines' )
- 9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
- 9967 FORMAT( ' Tests of CGBBRD', / ' (reduction of a general band ',
- $ 'matrix to real bidiagonal form)' )
- 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
- 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
- $ 'Problem Expert Driver CGGESX' )
- 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
- $ 'Problem Driver CGGES' )
- 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
- $ 'Problem Driver CGGEV' )
- 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
- $ 'Problem Expert Driver CGGEVX' )
- 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
- $ ', INMIN=', I4,
- $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
- $ ', IACC22 =', I4)
- 9960 FORMAT( / ' Tests of the CS Decomposition routines' )
- *
- * End of CCHKEE
- *
- END
|