|
- *> \brief \b ZHEMV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
- *
- * .. Scalar Arguments ..
- * COMPLEX*16 ALPHA,BETA
- * INTEGER INCX,INCY,LDA,N
- * CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A(LDA,*),X(*),Y(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHEMV performs the matrix-vector operation
- *>
- *> y := alpha*A*x + beta*y,
- *>
- *> where alpha and beta are scalars, x and y are n element vectors and
- *> A is an n by n hermitian matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the array A is to be referenced as
- *> follows:
- *>
- *> UPLO = 'U' or 'u' Only the upper triangular part of A
- *> is to be referenced.
- *>
- *> UPLO = 'L' or 'l' Only the lower triangular part of A
- *> is to be referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX*16
- *> On entry, ALPHA specifies the scalar alpha.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension ( LDA, N )
- *> Before entry with UPLO = 'U' or 'u', the leading n by n
- *> upper triangular part of the array A must contain the upper
- *> triangular part of the hermitian matrix and the strictly
- *> lower triangular part of A is not referenced.
- *> Before entry with UPLO = 'L' or 'l', the leading n by n
- *> lower triangular part of the array A must contain the lower
- *> triangular part of the hermitian matrix and the strictly
- *> upper triangular part of A is not referenced.
- *> Note that the imaginary parts of the diagonal elements need
- *> not be set and are assumed to be zero.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> max( 1, n ).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension at least
- *> ( 1 + ( n - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the n
- *> element vector x.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is COMPLEX*16
- *> On entry, BETA specifies the scalar beta. When BETA is
- *> supplied as zero then Y need not be set on input.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is COMPLEX*16 array, dimension at least
- *> ( 1 + ( n - 1 )*abs( INCY ) ).
- *> Before entry, the incremented array Y must contain the n
- *> element vector y. On exit, Y is overwritten by the updated
- *> vector y.
- *> \endverbatim
- *>
- *> \param[in] INCY
- *> \verbatim
- *> INCY is INTEGER
- *> On entry, INCY specifies the increment for the elements of
- *> Y. INCY must not be zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16_blas_level2
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 2 Blas routine.
- *> The vector and matrix arguments are not referenced when N = 0, or M = 0
- *>
- *> -- Written on 22-October-1986.
- *> Jack Dongarra, Argonne National Lab.
- *> Jeremy Du Croz, Nag Central Office.
- *> Sven Hammarling, Nag Central Office.
- *> Richard Hanson, Sandia National Labs.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
- *
- * -- Reference BLAS level2 routine (version 3.7.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- COMPLEX*16 ALPHA,BETA
- INTEGER INCX,INCY,LDA,N
- CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A(LDA,*),X(*),Y(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER (ONE= (1.0D+0,0.0D+0))
- COMPLEX*16 ZERO
- PARAMETER (ZERO= (0.0D+0,0.0D+0))
- * ..
- * .. Local Scalars ..
- COMPLEX*16 TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE,DCONJG,MAX
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (LDA.LT.MAX(1,N)) THEN
- INFO = 5
- ELSE IF (INCX.EQ.0) THEN
- INFO = 7
- ELSE IF (INCY.EQ.0) THEN
- INFO = 10
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZHEMV ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
- *
- * Set up the start points in X and Y.
- *
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through the triangular part
- * of A.
- *
- * First form y := beta*y.
- *
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- IF (LSAME(UPLO,'U')) THEN
- *
- * Form y when A is stored in upper triangle.
- *
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- DO 50 I = 1,J - 1
- Y(I) = Y(I) + TEMP1*A(I,J)
- TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70 I = 1,J - 1
- Y(IY) = Y(IY) + TEMP1*A(I,J)
- TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 80 CONTINUE
- END IF
- ELSE
- *
- * Form y when A is stored in lower triangle.
- *
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*DBLE(A(J,J))
- DO 90 I = J + 1,N
- Y(I) = Y(I) + TEMP1*A(I,J)
- TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J))
- IX = JX
- IY = JY
- DO 110 I = J + 1,N
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*A(I,J)
- TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZHEMV .
- *
- END
|