|
- *> \brief \b SPOT02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPOT02( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK,
- * RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDB, LDX, N, NRHS
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), B( LDB, * ), RWORK( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPOT02 computes the residual for the solution of a symmetric system
- *> of linear equations A*x = b:
- *>
- *> RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
- *>
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns of B, the matrix of right hand sides.
- *> NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The original symmetric matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> On entry, the right hand side vectors for the system of
- *> linear equations.
- *> On exit, B is overwritten with the difference B - A*X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> The maximum over the number of right hand sides of
- *> norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SPOT02( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK,
- $ RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDB, LDX, N, NRHS
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), RWORK( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J
- REAL ANORM, BNORM, EPS, XNORM
- * ..
- * .. External Functions ..
- REAL SASUM, SLAMCH, SLANSY
- EXTERNAL SASUM, SLAMCH, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SSYMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0 or NRHS = 0.
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Compute B - A*X
- *
- CALL SSYMM( 'Left', UPLO, N, NRHS, -ONE, A, LDA, X, LDX, ONE, B,
- $ LDB )
- *
- * Compute the maximum over the number of right hand sides of
- * norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) .
- *
- RESID = ZERO
- DO 10 J = 1, NRHS
- BNORM = SASUM( N, B( 1, J ), 1 )
- XNORM = SASUM( N, X( 1, J ), 1 )
- IF( XNORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- ELSE
- RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
- END IF
- 10 CONTINUE
- *
- RETURN
- *
- * End of SPOT02
- *
- END
|