|
- *> \brief \b DLQT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
- * RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
- * $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
- * $ WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLQT03 tests DORMLQ, which computes Q*C, Q'*C, C*Q or C*Q'.
- *>
- *> DLQT03 compares the results of a call to DORMLQ with the results of
- *> forming Q explicitly by a call to DORGLQ and then performing matrix
- *> multiplication by a call to DGEMM.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows or columns of the matrix C; C is n-by-m if
- *> Q is applied from the left, or m-by-n if Q is applied from
- *> the right. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the orthogonal matrix Q. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines the
- *> orthogonal matrix Q. N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (LDA,N)
- *> Details of the LQ factorization of an m-by-n matrix, as
- *> returned by DGELQF. See SGELQF for further details.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDA,N)
- *> \endverbatim
- *>
- *> \param[out] CC
- *> \verbatim
- *> CC is DOUBLE PRECISION array, dimension (LDA,N)
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDA,N)
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays AF, C, CC, and Q.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors corresponding
- *> to the LQ factorization in AF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK. LWORK must be at least M, and should be
- *> M*NB, where NB is the blocksize for this environment.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (4)
- *> The test ratios compare two techniques for multiplying a
- *> random matrix C by an n-by-n orthogonal matrix Q.
- *> RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS )
- *> RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS )
- *> RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
- *> RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DLQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
- $ RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
- $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
- $ WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D0 )
- DOUBLE PRECISION ROGUE
- PARAMETER ( ROGUE = -1.0D+10 )
- * ..
- * .. Local Scalars ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, ISIDE, ITRANS, J, MC, NC
- DOUBLE PRECISION CNORM, EPS, RESID
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL LSAME, DLAMCH, DLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DLACPY, DLARNV, DLASET, DORGLQ, DORMLQ
- * ..
- * .. Local Arrays ..
- INTEGER ISEED( 4 )
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX
- * ..
- * .. Scalars in Common ..
- CHARACTER*32 SRNAMT
- * ..
- * .. Common blocks ..
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEED / 1988, 1989, 1990, 1991 /
- * ..
- * .. Executable Statements ..
- *
- EPS = DLAMCH( 'Epsilon' )
- *
- * Copy the first k rows of the factorization to the array Q
- *
- CALL DLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
- CALL DLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
- *
- * Generate the n-by-n matrix Q
- *
- SRNAMT = 'DORGLQ'
- CALL DORGLQ( N, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
- *
- DO 30 ISIDE = 1, 2
- IF( ISIDE.EQ.1 ) THEN
- SIDE = 'L'
- MC = N
- NC = M
- ELSE
- SIDE = 'R'
- MC = M
- NC = N
- END IF
- *
- * Generate MC by NC matrix C
- *
- DO 10 J = 1, NC
- CALL DLARNV( 2, ISEED, MC, C( 1, J ) )
- 10 CONTINUE
- CNORM = DLANGE( '1', MC, NC, C, LDA, RWORK )
- IF( CNORM.EQ.0.0D0 )
- $ CNORM = ONE
- *
- DO 20 ITRANS = 1, 2
- IF( ITRANS.EQ.1 ) THEN
- TRANS = 'N'
- ELSE
- TRANS = 'T'
- END IF
- *
- * Copy C
- *
- CALL DLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
- *
- * Apply Q or Q' to C
- *
- SRNAMT = 'DORMLQ'
- CALL DORMLQ( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA,
- $ WORK, LWORK, INFO )
- *
- * Form explicit product and subtract
- *
- IF( LSAME( SIDE, 'L' ) ) THEN
- CALL DGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q,
- $ LDA, C, LDA, ONE, CC, LDA )
- ELSE
- CALL DGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C,
- $ LDA, Q, LDA, ONE, CC, LDA )
- END IF
- *
- * Compute error in the difference
- *
- RESID = DLANGE( '1', MC, NC, CC, LDA, RWORK )
- RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
- $ ( DBLE( MAX( 1, N ) )*CNORM*EPS )
- *
- 20 CONTINUE
- 30 CONTINUE
- *
- RETURN
- *
- * End of DLQT03
- *
- END
|