|
- *> \brief \b SDRVEV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- * NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
- * VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
- * IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
- * $ NTYPES, NWORK
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
- * REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
- * $ RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
- * $ WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SDRVEV checks the nonsymmetric eigenvalue problem driver SGEEV.
- *>
- *> When SDRVEV is called, a number of matrix "sizes" ("n's") and a
- *> number of matrix "types" are specified. For each size ("n")
- *> and each type of matrix, one matrix will be generated and used
- *> to test the nonsymmetric eigenroutines. For each matrix, 7
- *> tests will be performed:
- *>
- *> (1) | A * VR - VR * W | / ( n |A| ulp )
- *>
- *> Here VR is the matrix of unit right eigenvectors.
- *> W is a block diagonal matrix, with a 1x1 block for each
- *> real eigenvalue and a 2x2 block for each complex conjugate
- *> pair. If eigenvalues j and j+1 are a complex conjugate pair,
- *> so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
- *> 2 x 2 block corresponding to the pair will be:
- *>
- *> ( wr wi )
- *> ( -wi wr )
- *>
- *> Such a block multiplying an n x 2 matrix ( ur ui ) on the
- *> right will be the same as multiplying ur + i*ui by wr + i*wi.
- *>
- *> (2) | A**H * VL - VL * W**H | / ( n |A| ulp )
- *>
- *> Here VL is the matrix of unit left eigenvectors, A**H is the
- *> conjugate transpose of A, and W is as above.
- *>
- *> (3) | |VR(i)| - 1 | / ulp and whether largest component real
- *>
- *> VR(i) denotes the i-th column of VR.
- *>
- *> (4) | |VL(i)| - 1 | / ulp and whether largest component real
- *>
- *> VL(i) denotes the i-th column of VL.
- *>
- *> (5) W(full) = W(partial)
- *>
- *> W(full) denotes the eigenvalues computed when both VR and VL
- *> are also computed, and W(partial) denotes the eigenvalues
- *> computed when only W, only W and VR, or only W and VL are
- *> computed.
- *>
- *> (6) VR(full) = VR(partial)
- *>
- *> VR(full) denotes the right eigenvectors computed when both VR
- *> and VL are computed, and VR(partial) denotes the result
- *> when only VR is computed.
- *>
- *> (7) VL(full) = VL(partial)
- *>
- *> VL(full) denotes the left eigenvectors computed when both VR
- *> and VL are also computed, and VL(partial) denotes the result
- *> when only VL is computed.
- *>
- *> The "sizes" are specified by an array NN(1:NSIZES); the value of
- *> each element NN(j) specifies one size.
- *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
- *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
- *> Currently, the list of possible types is:
- *>
- *> (1) The zero matrix.
- *> (2) The identity matrix.
- *> (3) A (transposed) Jordan block, with 1's on the diagonal.
- *>
- *> (4) A diagonal matrix with evenly spaced entries
- *> 1, ..., ULP and random signs.
- *> (ULP = (first number larger than 1) - 1 )
- *> (5) A diagonal matrix with geometrically spaced entries
- *> 1, ..., ULP and random signs.
- *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
- *> and random signs.
- *>
- *> (7) Same as (4), but multiplied by a constant near
- *> the overflow threshold
- *> (8) Same as (4), but multiplied by a constant near
- *> the underflow threshold
- *>
- *> (9) A matrix of the form U' T U, where U is orthogonal and
- *> T has evenly spaced entries 1, ..., ULP with random signs
- *> on the diagonal and random O(1) entries in the upper
- *> triangle.
- *>
- *> (10) A matrix of the form U' T U, where U is orthogonal and
- *> T has geometrically spaced entries 1, ..., ULP with random
- *> signs on the diagonal and random O(1) entries in the upper
- *> triangle.
- *>
- *> (11) A matrix of the form U' T U, where U is orthogonal and
- *> T has "clustered" entries 1, ULP,..., ULP with random
- *> signs on the diagonal and random O(1) entries in the upper
- *> triangle.
- *>
- *> (12) A matrix of the form U' T U, where U is orthogonal and
- *> T has real or complex conjugate paired eigenvalues randomly
- *> chosen from ( ULP, 1 ) and random O(1) entries in the upper
- *> triangle.
- *>
- *> (13) A matrix of the form X' T X, where X has condition
- *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
- *> with random signs on the diagonal and random O(1) entries
- *> in the upper triangle.
- *>
- *> (14) A matrix of the form X' T X, where X has condition
- *> SQRT( ULP ) and T has geometrically spaced entries
- *> 1, ..., ULP with random signs on the diagonal and random
- *> O(1) entries in the upper triangle.
- *>
- *> (15) A matrix of the form X' T X, where X has condition
- *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
- *> with random signs on the diagonal and random O(1) entries
- *> in the upper triangle.
- *>
- *> (16) A matrix of the form X' T X, where X has condition
- *> SQRT( ULP ) and T has real or complex conjugate paired
- *> eigenvalues randomly chosen from ( ULP, 1 ) and random
- *> O(1) entries in the upper triangle.
- *>
- *> (17) Same as (16), but multiplied by a constant
- *> near the overflow threshold
- *> (18) Same as (16), but multiplied by a constant
- *> near the underflow threshold
- *>
- *> (19) Nonsymmetric matrix with random entries chosen from (-1,1).
- *> If N is at least 4, all entries in first two rows and last
- *> row, and first column and last two columns are zero.
- *> (20) Same as (19), but multiplied by a constant
- *> near the overflow threshold
- *> (21) Same as (19), but multiplied by a constant
- *> near the underflow threshold
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NSIZES
- *> \verbatim
- *> NSIZES is INTEGER
- *> The number of sizes of matrices to use. If it is zero,
- *> SDRVEV does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER array, dimension (NSIZES)
- *> An array containing the sizes to be used for the matrices.
- *> Zero values will be skipped. The values must be at least
- *> zero.
- *> \endverbatim
- *>
- *> \param[in] NTYPES
- *> \verbatim
- *> NTYPES is INTEGER
- *> The number of elements in DOTYPE. If it is zero, SDRVEV
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrix is in A. This
- *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> \endverbatim
- *>
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size in NN a
- *> matrix of that size and of type j will be generated.
- *> If NTYPES is smaller than the maximum number of types
- *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
- *> MAXTYP will not be generated. If NTYPES is larger
- *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
- *> will be ignored.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to SDRVEV to continue the same random number
- *> sequence.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error
- *> is scaled to be O(1), so THRESH should be a reasonably
- *> small multiple of 1, e.g., 10 or 100. In particular,
- *> it should not depend on the precision (single vs. double)
- *> or the size of the matrix. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns INFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA, max(NN))
- *> Used to hold the matrix whose eigenvalues are to be
- *> computed. On exit, A contains the last matrix actually used.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A, and H. LDA must be at
- *> least 1 and at least max(NN).
- *> \endverbatim
- *>
- *> \param[out] H
- *> \verbatim
- *> H is REAL array, dimension (LDA, max(NN))
- *> Another copy of the test matrix A, modified by SGEEV.
- *> \endverbatim
- *>
- *> \param[out] WR
- *> \verbatim
- *> WR is REAL array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] WI
- *> \verbatim
- *> WI is REAL array, dimension (max(NN))
- *>
- *> The real and imaginary parts of the eigenvalues of A.
- *> On exit, WR + WI*i are the eigenvalues of the matrix in A.
- *> \endverbatim
- *>
- *> \param[out] WR1
- *> \verbatim
- *> WR1 is REAL array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] WI1
- *> \verbatim
- *> WI1 is REAL array, dimension (max(NN))
- *>
- *> Like WR, WI, these arrays contain the eigenvalues of A,
- *> but those computed when SGEEV only computes a partial
- *> eigendecomposition, i.e. not the eigenvalues and left
- *> and right eigenvectors.
- *> \endverbatim
- *>
- *> \param[out] VL
- *> \verbatim
- *> VL is REAL array, dimension (LDVL, max(NN))
- *> VL holds the computed left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> Leading dimension of VL. Must be at least max(1,max(NN)).
- *> \endverbatim
- *>
- *> \param[out] VR
- *> \verbatim
- *> VR is REAL array, dimension (LDVR, max(NN))
- *> VR holds the computed right eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> Leading dimension of VR. Must be at least max(1,max(NN)).
- *> \endverbatim
- *>
- *> \param[out] LRE
- *> \verbatim
- *> LRE is REAL array, dimension (LDLRE,max(NN))
- *> LRE holds the computed right or left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDLRE
- *> \verbatim
- *> LDLRE is INTEGER
- *> Leading dimension of LRE. Must be at least max(1,max(NN)).
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (7)
- *> The values computed by the seven tests described above.
- *> The values are currently limited to 1/ulp, to avoid overflow.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (NWORK)
- *> \endverbatim
- *>
- *> \param[in] NWORK
- *> \verbatim
- *> NWORK is INTEGER
- *> The number of entries in WORK. This must be at least
- *> 5*NN(j)+2*NN(j)**2 for all j.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> If 0, then everything ran OK.
- *> -1: NSIZES < 0
- *> -2: Some NN(j) < 0
- *> -3: NTYPES < 0
- *> -6: THRESH < 0
- *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
- *> -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ).
- *> -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ).
- *> -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ).
- *> -23: NWORK too small.
- *> If SLATMR, SLATMS, SLATME or SGEEV returns an error code,
- *> the absolute value of it is returned.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> Some Local Variables and Parameters:
- *> ---- ----- --------- --- ----------
- *>
- *> ZERO, ONE Real 0 and 1.
- *> MAXTYP The number of types defined.
- *> NMAX Largest value in NN.
- *> NERRS The number of tests which have exceeded THRESH
- *> COND, CONDS,
- *> IMODE Values to be passed to the matrix generators.
- *> ANORM Norm of A; passed to matrix generators.
- *>
- *> OVFL, UNFL Overflow and underflow thresholds.
- *> ULP, ULPINV Finest relative precision and its inverse.
- *> RTULP, RTULPI Square roots of the previous 4 values.
- *>
- *> The following four arrays decode JTYPE:
- *> KTYPE(j) The general type (1-10) for type "j".
- *> KMODE(j) The MODE value to be passed to the matrix
- *> generator for type "j".
- *> KMAGN(j) The order of magnitude ( O(1),
- *> O(overflow^(1/2) ), O(underflow^(1/2) )
- *> KCONDS(j) Selectw whether CONDS is to be 1 or
- *> 1/sqrt(ulp). (0 means irrelevant.)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- $ NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
- $ VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
- $ IWORK, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
- $ NTYPES, NWORK
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER ISEED( 4 ), IWORK( * ), NN( * )
- REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
- $ RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
- $ WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- REAL TWO
- PARAMETER ( TWO = 2.0E0 )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 21 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADNN
- CHARACTER*3 PATH
- INTEGER IINFO, IMODE, ITYPE, IWK, J, JCOL, JJ, JSIZE,
- $ JTYPE, MTYPES, N, NERRS, NFAIL, NMAX,
- $ NNWORK, NTEST, NTESTF, NTESTT
- REAL ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TNRM,
- $ ULP, ULPINV, UNFL, VMX, VRMX, VTST
- * ..
- * .. Local Arrays ..
- CHARACTER ADUMMA( 1 )
- INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
- $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
- $ KTYPE( MAXTYP )
- REAL DUM( 1 ), RES( 2 )
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLAPY2, SNRM2
- EXTERNAL SLAMCH, SLAPY2, SNRM2
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEEV, SGET22, SLABAD, SLACPY, SLASUM, SLATME,
- $ SLATMR, SLATMS, SLASET, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SQRT
- * ..
- * .. Data statements ..
- DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
- DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
- $ 3, 1, 2, 3 /
- DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
- $ 1, 5, 5, 5, 4, 3, 1 /
- DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
- * ..
- * .. Executable Statements ..
- *
- PATH( 1: 1 ) = 'Single precision'
- PATH( 2: 3 ) = 'EV'
- *
- * Check for errors
- *
- NTESTT = 0
- NTESTF = 0
- INFO = 0
- *
- * Important constants
- *
- BADNN = .FALSE.
- NMAX = 0
- DO 10 J = 1, NSIZES
- NMAX = MAX( NMAX, NN( J ) )
- IF( NN( J ).LT.0 )
- $ BADNN = .TRUE.
- 10 CONTINUE
- *
- * Check for errors
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADNN ) THEN
- INFO = -2
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -3
- ELSE IF( THRESH.LT.ZERO ) THEN
- INFO = -6
- ELSE IF( NOUNIT.LE.0 ) THEN
- INFO = -7
- ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
- INFO = -9
- ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
- INFO = -16
- ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
- INFO = -18
- ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
- INFO = -20
- ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
- INFO = -23
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SDRVEV', -INFO )
- RETURN
- END IF
- *
- * Quick return if nothing to do
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
- $ RETURN
- *
- * More Important constants
- *
- UNFL = SLAMCH( 'Safe minimum' )
- OVFL = ONE / UNFL
- CALL SLABAD( UNFL, OVFL )
- ULP = SLAMCH( 'Precision' )
- ULPINV = ONE / ULP
- RTULP = SQRT( ULP )
- RTULPI = ONE / RTULP
- *
- * Loop over sizes, types
- *
- NERRS = 0
- *
- DO 270 JSIZE = 1, NSIZES
- N = NN( JSIZE )
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- DO 260 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 260
- *
- * Save ISEED in case of an error.
- *
- DO 20 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 20 CONTINUE
- *
- * Compute "A"
- *
- * Control parameters:
- *
- * KMAGN KCONDS KMODE KTYPE
- * =1 O(1) 1 clustered 1 zero
- * =2 large large clustered 2 identity
- * =3 small exponential Jordan
- * =4 arithmetic diagonal, (w/ eigenvalues)
- * =5 random log symmetric, w/ eigenvalues
- * =6 random general, w/ eigenvalues
- * =7 random diagonal
- * =8 random symmetric
- * =9 random general
- * =10 random triangular
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 90
- *
- ITYPE = KTYPE( JTYPE )
- IMODE = KMODE( JTYPE )
- *
- * Compute norm
- *
- GO TO ( 30, 40, 50 )KMAGN( JTYPE )
- *
- 30 CONTINUE
- ANORM = ONE
- GO TO 60
- *
- 40 CONTINUE
- ANORM = OVFL*ULP
- GO TO 60
- *
- 50 CONTINUE
- ANORM = UNFL*ULPINV
- GO TO 60
- *
- 60 CONTINUE
- *
- CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
- IINFO = 0
- COND = ULPINV
- *
- * Special Matrices -- Identity & Jordan block
- *
- * Zero
- *
- IF( ITYPE.EQ.1 ) THEN
- IINFO = 0
- *
- ELSE IF( ITYPE.EQ.2 ) THEN
- *
- * Identity
- *
- DO 70 JCOL = 1, N
- A( JCOL, JCOL ) = ANORM
- 70 CONTINUE
- *
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * Jordan Block
- *
- DO 80 JCOL = 1, N
- A( JCOL, JCOL ) = ANORM
- IF( JCOL.GT.1 )
- $ A( JCOL, JCOL-1 ) = ONE
- 80 CONTINUE
- *
- ELSE IF( ITYPE.EQ.4 ) THEN
- *
- * Diagonal Matrix, [Eigen]values Specified
- *
- CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
- $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
- $ IINFO )
- *
- ELSE IF( ITYPE.EQ.5 ) THEN
- *
- * Symmetric, eigenvalues specified
- *
- CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
- $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
- $ IINFO )
- *
- ELSE IF( ITYPE.EQ.6 ) THEN
- *
- * General, eigenvalues specified
- *
- IF( KCONDS( JTYPE ).EQ.1 ) THEN
- CONDS = ONE
- ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
- CONDS = RTULPI
- ELSE
- CONDS = ZERO
- END IF
- *
- ADUMMA( 1 ) = ' '
- CALL SLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
- $ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
- $ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
- $ IINFO )
- *
- ELSE IF( ITYPE.EQ.7 ) THEN
- *
- * Diagonal, random eigenvalues
- *
- CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
- $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
- *
- ELSE IF( ITYPE.EQ.8 ) THEN
- *
- * Symmetric, random eigenvalues
- *
- CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
- $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
- *
- ELSE IF( ITYPE.EQ.9 ) THEN
- *
- * General, random eigenvalues
- *
- CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
- $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
- IF( N.GE.4 ) THEN
- CALL SLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
- CALL SLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
- $ LDA )
- CALL SLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
- $ LDA )
- CALL SLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
- $ LDA )
- END IF
- *
- ELSE IF( ITYPE.EQ.10 ) THEN
- *
- * Triangular, random eigenvalues
- *
- CALL SLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
- $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
- *
- ELSE
- *
- IINFO = 1
- END IF
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9993 )'Generator', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- 90 CONTINUE
- *
- * Test for minimal and generous workspace
- *
- DO 250 IWK = 1, 2
- IF( IWK.EQ.1 ) THEN
- NNWORK = 4*N
- ELSE
- NNWORK = 5*N + 2*N**2
- END IF
- NNWORK = MAX( NNWORK, 1 )
- *
- * Initialize RESULT
- *
- DO 100 J = 1, 7
- RESULT( J ) = -ONE
- 100 CONTINUE
- *
- * Compute eigenvalues and eigenvectors, and test them
- *
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEV( 'V', 'V', N, H, LDA, WR, WI, VL, LDVL, VR,
- $ LDVR, WORK, NNWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- WRITE( NOUNIT, FMT = 9993 )'SGEEV1', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 220
- END IF
- *
- * Do Test (1)
- *
- CALL SGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI,
- $ WORK, RES )
- RESULT( 1 ) = RES( 1 )
- *
- * Do Test (2)
- *
- CALL SGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI,
- $ WORK, RES )
- RESULT( 2 ) = RES( 1 )
- *
- * Do Test (3)
- *
- DO 120 J = 1, N
- TNRM = ONE
- IF( WI( J ).EQ.ZERO ) THEN
- TNRM = SNRM2( N, VR( 1, J ), 1 )
- ELSE IF( WI( J ).GT.ZERO ) THEN
- TNRM = SLAPY2( SNRM2( N, VR( 1, J ), 1 ),
- $ SNRM2( N, VR( 1, J+1 ), 1 ) )
- END IF
- RESULT( 3 ) = MAX( RESULT( 3 ),
- $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
- IF( WI( J ).GT.ZERO ) THEN
- VMX = ZERO
- VRMX = ZERO
- DO 110 JJ = 1, N
- VTST = SLAPY2( VR( JJ, J ), VR( JJ, J+1 ) )
- IF( VTST.GT.VMX )
- $ VMX = VTST
- IF( VR( JJ, J+1 ).EQ.ZERO .AND.
- $ ABS( VR( JJ, J ) ).GT.VRMX )
- $ VRMX = ABS( VR( JJ, J ) )
- 110 CONTINUE
- IF( VRMX / VMX.LT.ONE-TWO*ULP )
- $ RESULT( 3 ) = ULPINV
- END IF
- 120 CONTINUE
- *
- * Do Test (4)
- *
- DO 140 J = 1, N
- TNRM = ONE
- IF( WI( J ).EQ.ZERO ) THEN
- TNRM = SNRM2( N, VL( 1, J ), 1 )
- ELSE IF( WI( J ).GT.ZERO ) THEN
- TNRM = SLAPY2( SNRM2( N, VL( 1, J ), 1 ),
- $ SNRM2( N, VL( 1, J+1 ), 1 ) )
- END IF
- RESULT( 4 ) = MAX( RESULT( 4 ),
- $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
- IF( WI( J ).GT.ZERO ) THEN
- VMX = ZERO
- VRMX = ZERO
- DO 130 JJ = 1, N
- VTST = SLAPY2( VL( JJ, J ), VL( JJ, J+1 ) )
- IF( VTST.GT.VMX )
- $ VMX = VTST
- IF( VL( JJ, J+1 ).EQ.ZERO .AND.
- $ ABS( VL( JJ, J ) ).GT.VRMX )
- $ VRMX = ABS( VL( JJ, J ) )
- 130 CONTINUE
- IF( VRMX / VMX.LT.ONE-TWO*ULP )
- $ RESULT( 4 ) = ULPINV
- END IF
- 140 CONTINUE
- *
- * Compute eigenvalues only, and test them
- *
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEV( 'N', 'N', N, H, LDA, WR1, WI1, DUM, 1, DUM,
- $ 1, WORK, NNWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- WRITE( NOUNIT, FMT = 9993 )'SGEEV2', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 220
- END IF
- *
- * Do Test (5)
- *
- DO 150 J = 1, N
- IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
- $ RESULT( 5 ) = ULPINV
- 150 CONTINUE
- *
- * Compute eigenvalues and right eigenvectors, and test them
- *
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEV( 'N', 'V', N, H, LDA, WR1, WI1, DUM, 1, LRE,
- $ LDLRE, WORK, NNWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- WRITE( NOUNIT, FMT = 9993 )'SGEEV3', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 220
- END IF
- *
- * Do Test (5) again
- *
- DO 160 J = 1, N
- IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
- $ RESULT( 5 ) = ULPINV
- 160 CONTINUE
- *
- * Do Test (6)
- *
- DO 180 J = 1, N
- DO 170 JJ = 1, N
- IF( VR( J, JJ ).NE.LRE( J, JJ ) )
- $ RESULT( 6 ) = ULPINV
- 170 CONTINUE
- 180 CONTINUE
- *
- * Compute eigenvalues and left eigenvectors, and test them
- *
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEV( 'V', 'N', N, H, LDA, WR1, WI1, LRE, LDLRE,
- $ DUM, 1, WORK, NNWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- WRITE( NOUNIT, FMT = 9993 )'SGEEV4', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 220
- END IF
- *
- * Do Test (5) again
- *
- DO 190 J = 1, N
- IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
- $ RESULT( 5 ) = ULPINV
- 190 CONTINUE
- *
- * Do Test (7)
- *
- DO 210 J = 1, N
- DO 200 JJ = 1, N
- IF( VL( J, JJ ).NE.LRE( J, JJ ) )
- $ RESULT( 7 ) = ULPINV
- 200 CONTINUE
- 210 CONTINUE
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- 220 CONTINUE
- *
- NTEST = 0
- NFAIL = 0
- DO 230 J = 1, 7
- IF( RESULT( J ).GE.ZERO )
- $ NTEST = NTEST + 1
- IF( RESULT( J ).GE.THRESH )
- $ NFAIL = NFAIL + 1
- 230 CONTINUE
- *
- IF( NFAIL.GT.0 )
- $ NTESTF = NTESTF + 1
- IF( NTESTF.EQ.1 ) THEN
- WRITE( NOUNIT, FMT = 9999 )PATH
- WRITE( NOUNIT, FMT = 9998 )
- WRITE( NOUNIT, FMT = 9997 )
- WRITE( NOUNIT, FMT = 9996 )
- WRITE( NOUNIT, FMT = 9995 )THRESH
- NTESTF = 2
- END IF
- *
- DO 240 J = 1, 7
- IF( RESULT( J ).GE.THRESH ) THEN
- WRITE( NOUNIT, FMT = 9994 )N, IWK, IOLDSD, JTYPE,
- $ J, RESULT( J )
- END IF
- 240 CONTINUE
- *
- NERRS = NERRS + NFAIL
- NTESTT = NTESTT + NTEST
- *
- 250 CONTINUE
- 260 CONTINUE
- 270 CONTINUE
- *
- * Summary
- *
- CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT )
- *
- 9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition',
- $ ' Driver', / ' Matrix types (see SDRVEV for details): ' )
- *
- 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
- $ ' ', ' 5=Diagonal: geometr. spaced entries.',
- $ / ' 2=Identity matrix. ', ' 6=Diagona',
- $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
- $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
- $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
- $ 'mall, evenly spaced.' )
- 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
- $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
- $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
- $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
- $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
- $ 'lex ', / ' 12=Well-cond., random complex ', 6X, ' ',
- $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
- $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
- $ ' complx ' )
- 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
- $ 'with small random entries.', / ' 20=Matrix with large ran',
- $ 'dom entries. ', / )
- 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
- $ / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
- $ / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
- $ / ' 3 = | |VR(i)| - 1 | / ulp ',
- $ / ' 4 = | |VL(i)| - 1 | / ulp ',
- $ / ' 5 = 0 if W same no matter if VR or VL computed,',
- $ ' 1/ulp otherwise', /
- $ ' 6 = 0 if VR same no matter if VL computed,',
- $ ' 1/ulp otherwise', /
- $ ' 7 = 0 if VL same no matter if VR computed,',
- $ ' 1/ulp otherwise', / )
- 9994 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
- $ ' type ', I2, ', test(', I2, ')=', G10.3 )
- 9993 FORMAT( ' SDRVEV: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
- $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
- *
- RETURN
- *
- * End of SDRVEV
- *
- END
|