|
- *> \brief \b CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLAHQR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahqr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahqr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahqr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
- * IHIZ, Z, LDZ, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
- * LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- * COMPLEX H( LDH, * ), W( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLAHQR is an auxiliary routine called by CHSEQR to update the
- *> eigenvalues and Schur decomposition already computed by CHSEQR, by
- *> dealing with the Hessenberg submatrix in rows and columns ILO to
- *> IHI.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTT
- *> \verbatim
- *> WANTT is LOGICAL
- *> = .TRUE. : the full Schur form T is required;
- *> = .FALSE.: only eigenvalues are required.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL
- *> = .TRUE. : the matrix of Schur vectors Z is required;
- *> = .FALSE.: Schur vectors are not required.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix H. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *> It is assumed that H is already upper triangular in rows and
- *> columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
- *> CLAHQR works primarily with the Hessenberg submatrix in rows
- *> and columns ILO to IHI, but applies transformations to all of
- *> H if WANTT is .TRUE..
- *> 1 <= ILO <= max(1,IHI); IHI <= N.
- *> \endverbatim
- *>
- *> \param[in,out] H
- *> \verbatim
- *> H is COMPLEX array, dimension (LDH,N)
- *> On entry, the upper Hessenberg matrix H.
- *> On exit, if INFO is zero and if WANTT is .TRUE., then H
- *> is upper triangular in rows and columns ILO:IHI. If INFO
- *> is zero and if WANTT is .FALSE., then the contents of H
- *> are unspecified on exit. The output state of H in case
- *> INF is positive is below under the description of INFO.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is INTEGER
- *> The leading dimension of the array H. LDH >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is COMPLEX array, dimension (N)
- *> The computed eigenvalues ILO to IHI are stored in the
- *> corresponding elements of W. If WANTT is .TRUE., the
- *> eigenvalues are stored in the same order as on the diagonal
- *> of the Schur form returned in H, with W(i) = H(i,i).
- *> \endverbatim
- *>
- *> \param[in] ILOZ
- *> \verbatim
- *> ILOZ is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHIZ
- *> \verbatim
- *> IHIZ is INTEGER
- *> Specify the rows of Z to which transformations must be
- *> applied if WANTZ is .TRUE..
- *> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is COMPLEX array, dimension (LDZ,N)
- *> If WANTZ is .TRUE., on entry Z must contain the current
- *> matrix Z of transformations accumulated by CHSEQR, and on
- *> exit Z has been updated; transformations are applied only to
- *> the submatrix Z(ILOZ:IHIZ,ILO:IHI).
- *> If WANTZ is .FALSE., Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> > 0: if INFO = i, CLAHQR failed to compute all the
- *> eigenvalues ILO to IHI in a total of 30 iterations
- *> per eigenvalue; elements i+1:ihi of W contain
- *> those eigenvalues which have been successfully
- *> computed.
- *>
- *> If INFO > 0 and WANTT is .FALSE., then on exit,
- *> the remaining unconverged eigenvalues are the
- *> eigenvalues of the upper Hessenberg matrix
- *> rows and columns ILO through INFO of the final,
- *> output value of H.
- *>
- *> If INFO > 0 and WANTT is .TRUE., then on exit
- *> (*) (initial value of H)*U = U*(final value of H)
- *> where U is an orthogonal matrix. The final
- *> value of H is upper Hessenberg and triangular in
- *> rows and columns INFO+1 through IHI.
- *>
- *> If INFO > 0 and WANTZ is .TRUE., then on exit
- *> (final value of Z) = (initial value of Z)*U
- *> where U is the orthogonal matrix in (*)
- *> (regardless of the value of WANTT.)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> 02-96 Based on modifications by
- *> David Day, Sandia National Laboratory, USA
- *>
- *> 12-04 Further modifications by
- *> Ralph Byers, University of Kansas, USA
- *> This is a modified version of CLAHQR from LAPACK version 3.0.
- *> It is (1) more robust against overflow and underflow and
- *> (2) adopts the more conservative Ahues & Tisseur stopping
- *> criterion (LAWN 122, 1997).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
- $ IHIZ, Z, LDZ, INFO )
- IMPLICIT NONE
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
- LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- COMPLEX H( LDH, * ), W( * ), Z( LDZ, * )
- * ..
- *
- * =========================================================
- *
- * .. Parameters ..
- COMPLEX ZERO, ONE
- PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ),
- $ ONE = ( 1.0e0, 0.0e0 ) )
- REAL RZERO, RONE, HALF
- PARAMETER ( RZERO = 0.0e0, RONE = 1.0e0, HALF = 0.5e0 )
- REAL DAT1
- PARAMETER ( DAT1 = 3.0e0 / 4.0e0 )
- INTEGER KEXSH
- PARAMETER ( KEXSH = 10 )
- * ..
- * .. Local Scalars ..
- COMPLEX CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
- $ V2, X, Y
- REAL AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
- $ SAFMIN, SMLNUM, SX, T2, TST, ULP
- INTEGER I, I1, I2, ITS, ITMAX, J, JHI, JLO, K, L, M,
- $ NH, NZ, KDEFL
- * ..
- * .. Local Arrays ..
- COMPLEX V( 2 )
- * ..
- * .. External Functions ..
- COMPLEX CLADIV
- REAL SLAMCH
- EXTERNAL CLADIV, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CCOPY, CLARFG, CSCAL, SLABAD
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, REAL, SQRT
- * ..
- * .. Statement Function definitions ..
- CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- IF( ILO.EQ.IHI ) THEN
- W( ILO ) = H( ILO, ILO )
- RETURN
- END IF
- *
- * ==== clear out the trash ====
- DO 10 J = ILO, IHI - 3
- H( J+2, J ) = ZERO
- H( J+3, J ) = ZERO
- 10 CONTINUE
- IF( ILO.LE.IHI-2 )
- $ H( IHI, IHI-2 ) = ZERO
- * ==== ensure that subdiagonal entries are real ====
- IF( WANTT ) THEN
- JLO = 1
- JHI = N
- ELSE
- JLO = ILO
- JHI = IHI
- END IF
- DO 20 I = ILO + 1, IHI
- IF( AIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
- * ==== The following redundant normalization
- * . avoids problems with both gradual and
- * . sudden underflow in ABS(H(I,I-1)) ====
- SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
- SC = CONJG( SC ) / ABS( SC )
- H( I, I-1 ) = ABS( H( I, I-1 ) )
- CALL CSCAL( JHI-I+1, SC, H( I, I ), LDH )
- CALL CSCAL( MIN( JHI, I+1 )-JLO+1, CONJG( SC ), H( JLO, I ),
- $ 1 )
- IF( WANTZ )
- $ CALL CSCAL( IHIZ-ILOZ+1, CONJG( SC ), Z( ILOZ, I ), 1 )
- END IF
- 20 CONTINUE
- *
- NH = IHI - ILO + 1
- NZ = IHIZ - ILOZ + 1
- *
- * Set machine-dependent constants for the stopping criterion.
- *
- SAFMIN = SLAMCH( 'SAFE MINIMUM' )
- SAFMAX = RONE / SAFMIN
- CALL SLABAD( SAFMIN, SAFMAX )
- ULP = SLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( REAL( NH ) / ULP )
- *
- * I1 and I2 are the indices of the first row and last column of H
- * to which transformations must be applied. If eigenvalues only are
- * being computed, I1 and I2 are set inside the main loop.
- *
- IF( WANTT ) THEN
- I1 = 1
- I2 = N
- END IF
- *
- * ITMAX is the total number of QR iterations allowed.
- *
- ITMAX = 30 * MAX( 10, NH )
- *
- * KDEFL counts the number of iterations since a deflation
- *
- KDEFL = 0
- *
- * The main loop begins here. I is the loop index and decreases from
- * IHI to ILO in steps of 1. Each iteration of the loop works
- * with the active submatrix in rows and columns L to I.
- * Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
- * H(L,L-1) is negligible so that the matrix splits.
- *
- I = IHI
- 30 CONTINUE
- IF( I.LT.ILO )
- $ GO TO 150
- *
- * Perform QR iterations on rows and columns ILO to I until a
- * submatrix of order 1 splits off at the bottom because a
- * subdiagonal element has become negligible.
- *
- L = ILO
- DO 130 ITS = 0, ITMAX
- *
- * Look for a single small subdiagonal element.
- *
- DO 40 K = I, L + 1, -1
- IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
- $ GO TO 50
- TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
- IF( TST.EQ.ZERO ) THEN
- IF( K-2.GE.ILO )
- $ TST = TST + ABS( REAL( H( K-1, K-2 ) ) )
- IF( K+1.LE.IHI )
- $ TST = TST + ABS( REAL( H( K+1, K ) ) )
- END IF
- * ==== The following is a conservative small subdiagonal
- * . deflation criterion due to Ahues & Tisseur (LAWN 122,
- * . 1997). It has better mathematical foundation and
- * . improves accuracy in some examples. ====
- IF( ABS( REAL( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
- AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
- BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
- AA = MAX( CABS1( H( K, K ) ),
- $ CABS1( H( K-1, K-1 )-H( K, K ) ) )
- BB = MIN( CABS1( H( K, K ) ),
- $ CABS1( H( K-1, K-1 )-H( K, K ) ) )
- S = AA + AB
- IF( BA*( AB / S ).LE.MAX( SMLNUM,
- $ ULP*( BB*( AA / S ) ) ) )GO TO 50
- END IF
- 40 CONTINUE
- 50 CONTINUE
- L = K
- IF( L.GT.ILO ) THEN
- *
- * H(L,L-1) is negligible
- *
- H( L, L-1 ) = ZERO
- END IF
- *
- * Exit from loop if a submatrix of order 1 has split off.
- *
- IF( L.GE.I )
- $ GO TO 140
- KDEFL = KDEFL + 1
- *
- * Now the active submatrix is in rows and columns L to I. If
- * eigenvalues only are being computed, only the active submatrix
- * need be transformed.
- *
- IF( .NOT.WANTT ) THEN
- I1 = L
- I2 = I
- END IF
- *
- IF( MOD(KDEFL,2*KEXSH).EQ.0 ) THEN
- *
- * Exceptional shift.
- *
- S = DAT1*ABS( REAL( H( I, I-1 ) ) )
- T = S + H( I, I )
- ELSE IF( MOD(KDEFL,KEXSH).EQ.0 ) THEN
- *
- * Exceptional shift.
- *
- S = DAT1*ABS( REAL( H( L+1, L ) ) )
- T = S + H( L, L )
- ELSE
- *
- * Wilkinson's shift.
- *
- T = H( I, I )
- U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
- S = CABS1( U )
- IF( S.NE.RZERO ) THEN
- X = HALF*( H( I-1, I-1 )-T )
- SX = CABS1( X )
- S = MAX( S, CABS1( X ) )
- Y = S*SQRT( ( X / S )**2+( U / S )**2 )
- IF( SX.GT.RZERO ) THEN
- IF( REAL( X / SX )*REAL( Y )+AIMAG( X / SX )*
- $ AIMAG( Y ).LT.RZERO )Y = -Y
- END IF
- T = T - U*CLADIV( U, ( X+Y ) )
- END IF
- END IF
- *
- * Look for two consecutive small subdiagonal elements.
- *
- DO 60 M = I - 1, L + 1, -1
- *
- * Determine the effect of starting the single-shift QR
- * iteration at row M, and see if this would make H(M,M-1)
- * negligible.
- *
- H11 = H( M, M )
- H22 = H( M+1, M+1 )
- H11S = H11 - T
- H21 = REAL( H( M+1, M ) )
- S = CABS1( H11S ) + ABS( H21 )
- H11S = H11S / S
- H21 = H21 / S
- V( 1 ) = H11S
- V( 2 ) = H21
- H10 = REAL( H( M, M-1 ) )
- IF( ABS( H10 )*ABS( H21 ).LE.ULP*
- $ ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
- $ GO TO 70
- 60 CONTINUE
- H11 = H( L, L )
- H22 = H( L+1, L+1 )
- H11S = H11 - T
- H21 = REAL( H( L+1, L ) )
- S = CABS1( H11S ) + ABS( H21 )
- H11S = H11S / S
- H21 = H21 / S
- V( 1 ) = H11S
- V( 2 ) = H21
- 70 CONTINUE
- *
- * Single-shift QR step
- *
- DO 120 K = M, I - 1
- *
- * The first iteration of this loop determines a reflection G
- * from the vector V and applies it from left and right to H,
- * thus creating a nonzero bulge below the subdiagonal.
- *
- * Each subsequent iteration determines a reflection G to
- * restore the Hessenberg form in the (K-1)th column, and thus
- * chases the bulge one step toward the bottom of the active
- * submatrix.
- *
- * V(2) is always real before the call to CLARFG, and hence
- * after the call T2 ( = T1*V(2) ) is also real.
- *
- IF( K.GT.M )
- $ CALL CCOPY( 2, H( K, K-1 ), 1, V, 1 )
- CALL CLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
- IF( K.GT.M ) THEN
- H( K, K-1 ) = V( 1 )
- H( K+1, K-1 ) = ZERO
- END IF
- V2 = V( 2 )
- T2 = REAL( T1*V2 )
- *
- * Apply G from the left to transform the rows of the matrix
- * in columns K to I2.
- *
- DO 80 J = K, I2
- SUM = CONJG( T1 )*H( K, J ) + T2*H( K+1, J )
- H( K, J ) = H( K, J ) - SUM
- H( K+1, J ) = H( K+1, J ) - SUM*V2
- 80 CONTINUE
- *
- * Apply G from the right to transform the columns of the
- * matrix in rows I1 to min(K+2,I).
- *
- DO 90 J = I1, MIN( K+2, I )
- SUM = T1*H( J, K ) + T2*H( J, K+1 )
- H( J, K ) = H( J, K ) - SUM
- H( J, K+1 ) = H( J, K+1 ) - SUM*CONJG( V2 )
- 90 CONTINUE
- *
- IF( WANTZ ) THEN
- *
- * Accumulate transformations in the matrix Z
- *
- DO 100 J = ILOZ, IHIZ
- SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
- Z( J, K ) = Z( J, K ) - SUM
- Z( J, K+1 ) = Z( J, K+1 ) - SUM*CONJG( V2 )
- 100 CONTINUE
- END IF
- *
- IF( K.EQ.M .AND. M.GT.L ) THEN
- *
- * If the QR step was started at row M > L because two
- * consecutive small subdiagonals were found, then extra
- * scaling must be performed to ensure that H(M,M-1) remains
- * real.
- *
- TEMP = ONE - T1
- TEMP = TEMP / ABS( TEMP )
- H( M+1, M ) = H( M+1, M )*CONJG( TEMP )
- IF( M+2.LE.I )
- $ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
- DO 110 J = M, I
- IF( J.NE.M+1 ) THEN
- IF( I2.GT.J )
- $ CALL CSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
- CALL CSCAL( J-I1, CONJG( TEMP ), H( I1, J ), 1 )
- IF( WANTZ ) THEN
- CALL CSCAL( NZ, CONJG( TEMP ), Z( ILOZ, J ), 1 )
- END IF
- END IF
- 110 CONTINUE
- END IF
- 120 CONTINUE
- *
- * Ensure that H(I,I-1) is real.
- *
- TEMP = H( I, I-1 )
- IF( AIMAG( TEMP ).NE.RZERO ) THEN
- RTEMP = ABS( TEMP )
- H( I, I-1 ) = RTEMP
- TEMP = TEMP / RTEMP
- IF( I2.GT.I )
- $ CALL CSCAL( I2-I, CONJG( TEMP ), H( I, I+1 ), LDH )
- CALL CSCAL( I-I1, TEMP, H( I1, I ), 1 )
- IF( WANTZ ) THEN
- CALL CSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
- END IF
- END IF
- *
- 130 CONTINUE
- *
- * Failure to converge in remaining number of iterations
- *
- INFO = I
- RETURN
- *
- 140 CONTINUE
- *
- * H(I,I-1) is negligible: one eigenvalue has converged.
- *
- W( I ) = H( I, I )
- * reset deflation counter
- KDEFL = 0
- *
- * return to start of the main loop with new value of I.
- *
- I = L - 1
- GO TO 30
- *
- 150 CONTINUE
- RETURN
- *
- * End of CLAHQR
- *
- END
|