|
- *> \brief \b ZGEQPF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGEQPF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqpf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqpf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqpf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER JPVT( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This routine is deprecated and has been replaced by routine ZGEQP3.
- *>
- *> ZGEQPF computes a QR factorization with column pivoting of a
- *> complex M-by-N matrix A: A*P = Q*R.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, the upper triangle of the array contains the
- *> min(M,N)-by-N upper triangular matrix R; the elements
- *> below the diagonal, together with the array TAU,
- *> represent the unitary matrix Q as a product of
- *> min(m,n) elementary reflectors.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] JPVT
- *> \verbatim
- *> JPVT is INTEGER array, dimension (N)
- *> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
- *> to the front of A*P (a leading column); if JPVT(i) = 0,
- *> the i-th column of A is a free column.
- *> On exit, if JPVT(i) = k, then the i-th column of A*P
- *> was the k-th column of A.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16GEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of elementary reflectors
- *>
- *> Q = H(1) H(2) . . . H(n)
- *>
- *> Each H(i) has the form
- *>
- *> H = I - tau * v * v**H
- *>
- *> where tau is a complex scalar, and v is a complex vector with
- *> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
- *>
- *> The matrix P is represented in jpvt as follows: If
- *> jpvt(j) = i
- *> then the jth column of P is the ith canonical unit vector.
- *>
- *> Partial column norm updating strategy modified by
- *> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
- *> University of Zagreb, Croatia.
- *> -- April 2011 --
- *> For more details see LAPACK Working Note 176.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE ZGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER JPVT( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, ITEMP, J, MA, MN, PVT
- DOUBLE PRECISION TEMP, TEMP2, TOL3Z
- COMPLEX*16 AII
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGEQR2, ZLARF, ZLARFG, ZSWAP, ZUNM2R
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DCMPLX, DCONJG, MAX, MIN, SQRT
- * ..
- * .. External Functions ..
- INTEGER IDAMAX
- DOUBLE PRECISION DLAMCH, DZNRM2
- EXTERNAL IDAMAX, DLAMCH, DZNRM2
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGEQPF', -INFO )
- RETURN
- END IF
- *
- MN = MIN( M, N )
- TOL3Z = SQRT(DLAMCH('Epsilon'))
- *
- * Move initial columns up front
- *
- ITEMP = 1
- DO 10 I = 1, N
- IF( JPVT( I ).NE.0 ) THEN
- IF( I.NE.ITEMP ) THEN
- CALL ZSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 )
- JPVT( I ) = JPVT( ITEMP )
- JPVT( ITEMP ) = I
- ELSE
- JPVT( I ) = I
- END IF
- ITEMP = ITEMP + 1
- ELSE
- JPVT( I ) = I
- END IF
- 10 CONTINUE
- ITEMP = ITEMP - 1
- *
- * Compute the QR factorization and update remaining columns
- *
- IF( ITEMP.GT.0 ) THEN
- MA = MIN( ITEMP, M )
- CALL ZGEQR2( M, MA, A, LDA, TAU, WORK, INFO )
- IF( MA.LT.N ) THEN
- CALL ZUNM2R( 'Left', 'Conjugate transpose', M, N-MA, MA, A,
- $ LDA, TAU, A( 1, MA+1 ), LDA, WORK, INFO )
- END IF
- END IF
- *
- IF( ITEMP.LT.MN ) THEN
- *
- * Initialize partial column norms. The first n elements of
- * work store the exact column norms.
- *
- DO 20 I = ITEMP + 1, N
- RWORK( I ) = DZNRM2( M-ITEMP, A( ITEMP+1, I ), 1 )
- RWORK( N+I ) = RWORK( I )
- 20 CONTINUE
- *
- * Compute factorization
- *
- DO 40 I = ITEMP + 1, MN
- *
- * Determine ith pivot column and swap if necessary
- *
- PVT = ( I-1 ) + IDAMAX( N-I+1, RWORK( I ), 1 )
- *
- IF( PVT.NE.I ) THEN
- CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
- ITEMP = JPVT( PVT )
- JPVT( PVT ) = JPVT( I )
- JPVT( I ) = ITEMP
- RWORK( PVT ) = RWORK( I )
- RWORK( N+PVT ) = RWORK( N+I )
- END IF
- *
- * Generate elementary reflector H(i)
- *
- AII = A( I, I )
- CALL ZLARFG( M-I+1, AII, A( MIN( I+1, M ), I ), 1,
- $ TAU( I ) )
- A( I, I ) = AII
- *
- IF( I.LT.N ) THEN
- *
- * Apply H(i) to A(i:m,i+1:n) from the left
- *
- AII = A( I, I )
- A( I, I ) = DCMPLX( ONE )
- CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
- $ DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
- A( I, I ) = AII
- END IF
- *
- * Update partial column norms
- *
- DO 30 J = I + 1, N
- IF( RWORK( J ).NE.ZERO ) THEN
- *
- * NOTE: The following 4 lines follow from the analysis in
- * Lapack Working Note 176.
- *
- TEMP = ABS( A( I, J ) ) / RWORK( J )
- TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
- TEMP2 = TEMP*( RWORK( J ) / RWORK( N+J ) )**2
- IF( TEMP2 .LE. TOL3Z ) THEN
- IF( M-I.GT.0 ) THEN
- RWORK( J ) = DZNRM2( M-I, A( I+1, J ), 1 )
- RWORK( N+J ) = RWORK( J )
- ELSE
- RWORK( J ) = ZERO
- RWORK( N+J ) = ZERO
- END IF
- ELSE
- RWORK( J ) = RWORK( J )*SQRT( TEMP )
- END IF
- END IF
- 30 CONTINUE
- *
- 40 CONTINUE
- END IF
- RETURN
- *
- * End of ZGEQPF
- *
- END
|