|
- *> \brief \b ZLATTB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
- * LDAB, B, WORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER IMAT, INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( 4 )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 AB( LDAB, * ), B( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLATTB generates a triangular test matrix in 2-dimensional storage.
- *> IMAT and UPLO uniquely specify the properties of the test matrix,
- *> which is returned in the array A.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] IMAT
- *> \verbatim
- *> IMAT is INTEGER
- *> An integer key describing which matrix to generate for this
- *> path.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A will be upper or lower
- *> triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies whether the matrix or its transpose will be used.
- *> = 'N': No transpose
- *> = 'T': Transpose
- *> = 'C': Conjugate transpose (= transpose)
- *> \endverbatim
- *>
- *> \param[out] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> The seed vector for the random number generator (used in
- *> ZLATMS). Modified on exit.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix to be generated.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals or subdiagonals of the banded
- *> triangular matrix A. KD >= 0.
- *> \endverbatim
- *>
- *> \param[out] AB
- *> \verbatim
- *> AB is COMPLEX*16 array, dimension (LDAB,N)
- *> The upper or lower triangular banded matrix A, stored in the
- *> first KD+1 rows of AB. Let j be a column of A, 1<=j<=n.
- *> If UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j.
- *> If UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
- $ LDAB, B, WORK, RWORK, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER IMAT, INFO, KD, LDAB, N
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( 4 )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 AB( LDAB, * ), B( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, TWO, ZERO
- PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- CHARACTER DIST, PACKIT, TYPE
- CHARACTER*3 PATH
- INTEGER I, IOFF, IY, J, JCOUNT, KL, KU, LENJ, MODE
- DOUBLE PRECISION ANORM, BIGNUM, BNORM, BSCAL, CNDNUM, REXP,
- $ SFAC, SMLNUM, TEXP, TLEFT, TNORM, TSCAL, ULP,
- $ UNFL
- COMPLEX*16 PLUS1, PLUS2, STAR1
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IZAMAX
- DOUBLE PRECISION DLAMCH, DLARND
- COMPLEX*16 ZLARND
- EXTERNAL LSAME, IZAMAX, DLAMCH, DLARND, ZLARND
- * ..
- * .. External Subroutines ..
- EXTERNAL DLABAD, DLARNV, ZCOPY, ZDSCAL, ZLARNV, ZLATB4,
- $ ZLATMS, ZSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- PATH( 1: 1 ) = 'Zomplex precision'
- PATH( 2: 3 ) = 'TB'
- UNFL = DLAMCH( 'Safe minimum' )
- ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
- SMLNUM = UNFL
- BIGNUM = ( ONE-ULP ) / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
- IF( ( IMAT.GE.6 .AND. IMAT.LE.9 ) .OR. IMAT.EQ.17 ) THEN
- DIAG = 'U'
- ELSE
- DIAG = 'N'
- END IF
- INFO = 0
- *
- * Quick return if N.LE.0.
- *
- IF( N.LE.0 )
- $ RETURN
- *
- * Call ZLATB4 to set parameters for CLATMS.
- *
- UPPER = LSAME( UPLO, 'U' )
- IF( UPPER ) THEN
- CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ CNDNUM, DIST )
- KU = KD
- IOFF = 1 + MAX( 0, KD-N+1 )
- KL = 0
- PACKIT = 'Q'
- ELSE
- CALL ZLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ CNDNUM, DIST )
- KL = KD
- IOFF = 1
- KU = 0
- PACKIT = 'B'
- END IF
- *
- * IMAT <= 5: Non-unit triangular matrix
- *
- IF( IMAT.LE.5 ) THEN
- CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
- $ ANORM, KL, KU, PACKIT, AB( IOFF, 1 ), LDAB, WORK,
- $ INFO )
- *
- * IMAT > 5: Unit triangular matrix
- * The diagonal is deliberately set to something other than 1.
- *
- * IMAT = 6: Matrix is the identity
- *
- ELSE IF( IMAT.EQ.6 ) THEN
- IF( UPPER ) THEN
- DO 20 J = 1, N
- DO 10 I = MAX( 1, KD+2-J ), KD
- AB( I, J ) = ZERO
- 10 CONTINUE
- AB( KD+1, J ) = J
- 20 CONTINUE
- ELSE
- DO 40 J = 1, N
- AB( 1, J ) = J
- DO 30 I = 2, MIN( KD+1, N-J+1 )
- AB( I, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- END IF
- *
- * IMAT > 6: Non-trivial unit triangular matrix
- *
- * A unit triangular matrix T with condition CNDNUM is formed.
- * In this version, T only has bandwidth 2, the rest of it is zero.
- *
- ELSE IF( IMAT.LE.9 ) THEN
- TNORM = SQRT( CNDNUM )
- *
- * Initialize AB to zero.
- *
- IF( UPPER ) THEN
- DO 60 J = 1, N
- DO 50 I = MAX( 1, KD+2-J ), KD
- AB( I, J ) = ZERO
- 50 CONTINUE
- AB( KD+1, J ) = DBLE( J )
- 60 CONTINUE
- ELSE
- DO 80 J = 1, N
- DO 70 I = 2, MIN( KD+1, N-J+1 )
- AB( I, J ) = ZERO
- 70 CONTINUE
- AB( 1, J ) = DBLE( J )
- 80 CONTINUE
- END IF
- *
- * Special case: T is tridiagonal. Set every other offdiagonal
- * so that the matrix has norm TNORM+1.
- *
- IF( KD.EQ.1 ) THEN
- IF( UPPER ) THEN
- AB( 1, 2 ) = TNORM*ZLARND( 5, ISEED )
- LENJ = ( N-3 ) / 2
- CALL ZLARNV( 2, ISEED, LENJ, WORK )
- DO 90 J = 1, LENJ
- AB( 1, 2*( J+1 ) ) = TNORM*WORK( J )
- 90 CONTINUE
- ELSE
- AB( 2, 1 ) = TNORM*ZLARND( 5, ISEED )
- LENJ = ( N-3 ) / 2
- CALL ZLARNV( 2, ISEED, LENJ, WORK )
- DO 100 J = 1, LENJ
- AB( 2, 2*J+1 ) = TNORM*WORK( J )
- 100 CONTINUE
- END IF
- ELSE IF( KD.GT.1 ) THEN
- *
- * Form a unit triangular matrix T with condition CNDNUM. T is
- * given by
- * | 1 + * |
- * | 1 + |
- * T = | 1 + * |
- * | 1 + |
- * | 1 + * |
- * | 1 + |
- * | . . . |
- * Each element marked with a '*' is formed by taking the product
- * of the adjacent elements marked with '+'. The '*'s can be
- * chosen freely, and the '+'s are chosen so that the inverse of
- * T will have elements of the same magnitude as T.
- *
- * The two offdiagonals of T are stored in WORK.
- *
- STAR1 = TNORM*ZLARND( 5, ISEED )
- SFAC = SQRT( TNORM )
- PLUS1 = SFAC*ZLARND( 5, ISEED )
- DO 110 J = 1, N, 2
- PLUS2 = STAR1 / PLUS1
- WORK( J ) = PLUS1
- WORK( N+J ) = STAR1
- IF( J+1.LE.N ) THEN
- WORK( J+1 ) = PLUS2
- WORK( N+J+1 ) = ZERO
- PLUS1 = STAR1 / PLUS2
- *
- * Generate a new *-value with norm between sqrt(TNORM)
- * and TNORM.
- *
- REXP = DLARND( 2, ISEED )
- IF( REXP.LT.ZERO ) THEN
- STAR1 = -SFAC**( ONE-REXP )*ZLARND( 5, ISEED )
- ELSE
- STAR1 = SFAC**( ONE+REXP )*ZLARND( 5, ISEED )
- END IF
- END IF
- 110 CONTINUE
- *
- * Copy the tridiagonal T to AB.
- *
- IF( UPPER ) THEN
- CALL ZCOPY( N-1, WORK, 1, AB( KD, 2 ), LDAB )
- CALL ZCOPY( N-2, WORK( N+1 ), 1, AB( KD-1, 3 ), LDAB )
- ELSE
- CALL ZCOPY( N-1, WORK, 1, AB( 2, 1 ), LDAB )
- CALL ZCOPY( N-2, WORK( N+1 ), 1, AB( 3, 1 ), LDAB )
- END IF
- END IF
- *
- * IMAT > 9: Pathological test cases. These triangular matrices
- * are badly scaled or badly conditioned, so when used in solving a
- * triangular system they may cause overflow in the solution vector.
- *
- ELSE IF( IMAT.EQ.10 ) THEN
- *
- * Type 10: Generate a triangular matrix with elements between
- * -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
- * Make the right hand side large so that it requires scaling.
- *
- IF( UPPER ) THEN
- DO 120 J = 1, N
- LENJ = MIN( J-1, KD )
- CALL ZLARNV( 4, ISEED, LENJ, AB( KD+1-LENJ, J ) )
- AB( KD+1, J ) = ZLARND( 5, ISEED )*TWO
- 120 CONTINUE
- ELSE
- DO 130 J = 1, N
- LENJ = MIN( N-J, KD )
- IF( LENJ.GT.0 )
- $ CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) )
- AB( 1, J ) = ZLARND( 5, ISEED )*TWO
- 130 CONTINUE
- END IF
- *
- * Set the right hand side so that the largest value is BIGNUM.
- *
- CALL ZLARNV( 2, ISEED, N, B )
- IY = IZAMAX( N, B, 1 )
- BNORM = ABS( B( IY ) )
- BSCAL = BIGNUM / MAX( ONE, BNORM )
- CALL ZDSCAL( N, BSCAL, B, 1 )
- *
- ELSE IF( IMAT.EQ.11 ) THEN
- *
- * Type 11: Make the first diagonal element in the solve small to
- * cause immediate overflow when dividing by T(j,j).
- * In type 11, the offdiagonal elements are small (CNORM(j) < 1).
- *
- CALL ZLARNV( 2, ISEED, N, B )
- TSCAL = ONE / DBLE( KD+1 )
- IF( UPPER ) THEN
- DO 140 J = 1, N
- LENJ = MIN( J-1, KD )
- IF( LENJ.GT.0 ) THEN
- CALL ZLARNV( 4, ISEED, LENJ, AB( KD+2-LENJ, J ) )
- CALL ZDSCAL( LENJ, TSCAL, AB( KD+2-LENJ, J ), 1 )
- END IF
- AB( KD+1, J ) = ZLARND( 5, ISEED )
- 140 CONTINUE
- AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
- ELSE
- DO 150 J = 1, N
- LENJ = MIN( N-J, KD )
- IF( LENJ.GT.0 ) THEN
- CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) )
- CALL ZDSCAL( LENJ, TSCAL, AB( 2, J ), 1 )
- END IF
- AB( 1, J ) = ZLARND( 5, ISEED )
- 150 CONTINUE
- AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
- END IF
- *
- ELSE IF( IMAT.EQ.12 ) THEN
- *
- * Type 12: Make the first diagonal element in the solve small to
- * cause immediate overflow when dividing by T(j,j).
- * In type 12, the offdiagonal elements are O(1) (CNORM(j) > 1).
- *
- CALL ZLARNV( 2, ISEED, N, B )
- IF( UPPER ) THEN
- DO 160 J = 1, N
- LENJ = MIN( J-1, KD )
- IF( LENJ.GT.0 )
- $ CALL ZLARNV( 4, ISEED, LENJ, AB( KD+2-LENJ, J ) )
- AB( KD+1, J ) = ZLARND( 5, ISEED )
- 160 CONTINUE
- AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
- ELSE
- DO 170 J = 1, N
- LENJ = MIN( N-J, KD )
- IF( LENJ.GT.0 )
- $ CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) )
- AB( 1, J ) = ZLARND( 5, ISEED )
- 170 CONTINUE
- AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
- END IF
- *
- ELSE IF( IMAT.EQ.13 ) THEN
- *
- * Type 13: T is diagonal with small numbers on the diagonal to
- * make the growth factor underflow, but a small right hand side
- * chosen so that the solution does not overflow.
- *
- IF( UPPER ) THEN
- JCOUNT = 1
- DO 190 J = N, 1, -1
- DO 180 I = MAX( 1, KD+1-( J-1 ) ), KD
- AB( I, J ) = ZERO
- 180 CONTINUE
- IF( JCOUNT.LE.2 ) THEN
- AB( KD+1, J ) = SMLNUM*ZLARND( 5, ISEED )
- ELSE
- AB( KD+1, J ) = ZLARND( 5, ISEED )
- END IF
- JCOUNT = JCOUNT + 1
- IF( JCOUNT.GT.4 )
- $ JCOUNT = 1
- 190 CONTINUE
- ELSE
- JCOUNT = 1
- DO 210 J = 1, N
- DO 200 I = 2, MIN( N-J+1, KD+1 )
- AB( I, J ) = ZERO
- 200 CONTINUE
- IF( JCOUNT.LE.2 ) THEN
- AB( 1, J ) = SMLNUM*ZLARND( 5, ISEED )
- ELSE
- AB( 1, J ) = ZLARND( 5, ISEED )
- END IF
- JCOUNT = JCOUNT + 1
- IF( JCOUNT.GT.4 )
- $ JCOUNT = 1
- 210 CONTINUE
- END IF
- *
- * Set the right hand side alternately zero and small.
- *
- IF( UPPER ) THEN
- B( 1 ) = ZERO
- DO 220 I = N, 2, -2
- B( I ) = ZERO
- B( I-1 ) = SMLNUM*ZLARND( 5, ISEED )
- 220 CONTINUE
- ELSE
- B( N ) = ZERO
- DO 230 I = 1, N - 1, 2
- B( I ) = ZERO
- B( I+1 ) = SMLNUM*ZLARND( 5, ISEED )
- 230 CONTINUE
- END IF
- *
- ELSE IF( IMAT.EQ.14 ) THEN
- *
- * Type 14: Make the diagonal elements small to cause gradual
- * overflow when dividing by T(j,j). To control the amount of
- * scaling needed, the matrix is bidiagonal.
- *
- TEXP = ONE / DBLE( KD+1 )
- TSCAL = SMLNUM**TEXP
- CALL ZLARNV( 4, ISEED, N, B )
- IF( UPPER ) THEN
- DO 250 J = 1, N
- DO 240 I = MAX( 1, KD+2-J ), KD
- AB( I, J ) = ZERO
- 240 CONTINUE
- IF( J.GT.1 .AND. KD.GT.0 )
- $ AB( KD, J ) = DCMPLX( -ONE, -ONE )
- AB( KD+1, J ) = TSCAL*ZLARND( 5, ISEED )
- 250 CONTINUE
- B( N ) = DCMPLX( ONE, ONE )
- ELSE
- DO 270 J = 1, N
- DO 260 I = 3, MIN( N-J+1, KD+1 )
- AB( I, J ) = ZERO
- 260 CONTINUE
- IF( J.LT.N .AND. KD.GT.0 )
- $ AB( 2, J ) = DCMPLX( -ONE, -ONE )
- AB( 1, J ) = TSCAL*ZLARND( 5, ISEED )
- 270 CONTINUE
- B( 1 ) = DCMPLX( ONE, ONE )
- END IF
- *
- ELSE IF( IMAT.EQ.15 ) THEN
- *
- * Type 15: One zero diagonal element.
- *
- IY = N / 2 + 1
- IF( UPPER ) THEN
- DO 280 J = 1, N
- LENJ = MIN( J, KD+1 )
- CALL ZLARNV( 4, ISEED, LENJ, AB( KD+2-LENJ, J ) )
- IF( J.NE.IY ) THEN
- AB( KD+1, J ) = ZLARND( 5, ISEED )*TWO
- ELSE
- AB( KD+1, J ) = ZERO
- END IF
- 280 CONTINUE
- ELSE
- DO 290 J = 1, N
- LENJ = MIN( N-J+1, KD+1 )
- CALL ZLARNV( 4, ISEED, LENJ, AB( 1, J ) )
- IF( J.NE.IY ) THEN
- AB( 1, J ) = ZLARND( 5, ISEED )*TWO
- ELSE
- AB( 1, J ) = ZERO
- END IF
- 290 CONTINUE
- END IF
- CALL ZLARNV( 2, ISEED, N, B )
- CALL ZDSCAL( N, TWO, B, 1 )
- *
- ELSE IF( IMAT.EQ.16 ) THEN
- *
- * Type 16: Make the offdiagonal elements large to cause overflow
- * when adding a column of T. In the non-transposed case, the
- * matrix is constructed to cause overflow when adding a column in
- * every other step.
- *
- TSCAL = UNFL / ULP
- TSCAL = ( ONE-ULP ) / TSCAL
- DO 310 J = 1, N
- DO 300 I = 1, KD + 1
- AB( I, J ) = ZERO
- 300 CONTINUE
- 310 CONTINUE
- TEXP = ONE
- IF( KD.GT.0 ) THEN
- IF( UPPER ) THEN
- DO 330 J = N, 1, -KD
- DO 320 I = J, MAX( 1, J-KD+1 ), -2
- AB( 1+( J-I ), I ) = -TSCAL / DBLE( KD+2 )
- AB( KD+1, I ) = ONE
- B( I ) = TEXP*( ONE-ULP )
- IF( I.GT.MAX( 1, J-KD+1 ) ) THEN
- AB( 2+( J-I ), I-1 ) = -( TSCAL / DBLE( KD+2 ) )
- $ / DBLE( KD+3 )
- AB( KD+1, I-1 ) = ONE
- B( I-1 ) = TEXP*DBLE( ( KD+1 )*( KD+1 )+KD )
- END IF
- TEXP = TEXP*TWO
- 320 CONTINUE
- B( MAX( 1, J-KD+1 ) ) = ( DBLE( KD+2 ) /
- $ DBLE( KD+3 ) )*TSCAL
- 330 CONTINUE
- ELSE
- DO 350 J = 1, N, KD
- TEXP = ONE
- LENJ = MIN( KD+1, N-J+1 )
- DO 340 I = J, MIN( N, J+KD-1 ), 2
- AB( LENJ-( I-J ), J ) = -TSCAL / DBLE( KD+2 )
- AB( 1, J ) = ONE
- B( J ) = TEXP*( ONE-ULP )
- IF( I.LT.MIN( N, J+KD-1 ) ) THEN
- AB( LENJ-( I-J+1 ), I+1 ) = -( TSCAL /
- $ DBLE( KD+2 ) ) / DBLE( KD+3 )
- AB( 1, I+1 ) = ONE
- B( I+1 ) = TEXP*DBLE( ( KD+1 )*( KD+1 )+KD )
- END IF
- TEXP = TEXP*TWO
- 340 CONTINUE
- B( MIN( N, J+KD-1 ) ) = ( DBLE( KD+2 ) /
- $ DBLE( KD+3 ) )*TSCAL
- 350 CONTINUE
- END IF
- END IF
- *
- ELSE IF( IMAT.EQ.17 ) THEN
- *
- * Type 17: Generate a unit triangular matrix with elements
- * between -1 and 1, and make the right hand side large so that it
- * requires scaling.
- *
- IF( UPPER ) THEN
- DO 360 J = 1, N
- LENJ = MIN( J-1, KD )
- CALL ZLARNV( 4, ISEED, LENJ, AB( KD+1-LENJ, J ) )
- AB( KD+1, J ) = DBLE( J )
- 360 CONTINUE
- ELSE
- DO 370 J = 1, N
- LENJ = MIN( N-J, KD )
- IF( LENJ.GT.0 )
- $ CALL ZLARNV( 4, ISEED, LENJ, AB( 2, J ) )
- AB( 1, J ) = DBLE( J )
- 370 CONTINUE
- END IF
- *
- * Set the right hand side so that the largest value is BIGNUM.
- *
- CALL ZLARNV( 2, ISEED, N, B )
- IY = IZAMAX( N, B, 1 )
- BNORM = ABS( B( IY ) )
- BSCAL = BIGNUM / MAX( ONE, BNORM )
- CALL ZDSCAL( N, BSCAL, B, 1 )
- *
- ELSE IF( IMAT.EQ.18 ) THEN
- *
- * Type 18: Generate a triangular matrix with elements between
- * BIGNUM/(KD+1) and BIGNUM so that at least one of the column
- * norms will exceed BIGNUM.
- * 1/3/91: ZLATBS no longer can handle this case
- *
- TLEFT = BIGNUM / DBLE( KD+1 )
- TSCAL = BIGNUM*( DBLE( KD+1 ) / DBLE( KD+2 ) )
- IF( UPPER ) THEN
- DO 390 J = 1, N
- LENJ = MIN( J, KD+1 )
- CALL ZLARNV( 5, ISEED, LENJ, AB( KD+2-LENJ, J ) )
- CALL DLARNV( 1, ISEED, LENJ, RWORK( KD+2-LENJ ) )
- DO 380 I = KD + 2 - LENJ, KD + 1
- AB( I, J ) = AB( I, J )*( TLEFT+RWORK( I )*TSCAL )
- 380 CONTINUE
- 390 CONTINUE
- ELSE
- DO 410 J = 1, N
- LENJ = MIN( N-J+1, KD+1 )
- CALL ZLARNV( 5, ISEED, LENJ, AB( 1, J ) )
- CALL DLARNV( 1, ISEED, LENJ, RWORK )
- DO 400 I = 1, LENJ
- AB( I, J ) = AB( I, J )*( TLEFT+RWORK( I )*TSCAL )
- 400 CONTINUE
- 410 CONTINUE
- END IF
- CALL ZLARNV( 2, ISEED, N, B )
- CALL ZDSCAL( N, TWO, B, 1 )
- END IF
- *
- * Flip the matrix if the transpose will be used.
- *
- IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
- IF( UPPER ) THEN
- DO 420 J = 1, N / 2
- LENJ = MIN( N-2*J+1, KD+1 )
- CALL ZSWAP( LENJ, AB( KD+1, J ), LDAB-1,
- $ AB( KD+2-LENJ, N-J+1 ), -1 )
- 420 CONTINUE
- ELSE
- DO 430 J = 1, N / 2
- LENJ = MIN( N-2*J+1, KD+1 )
- CALL ZSWAP( LENJ, AB( 1, J ), 1, AB( LENJ, N-J+2-LENJ ),
- $ -LDAB+1 )
- 430 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZLATTB
- *
- END
|