|
- *> \brief \b ZEBCHVXX
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZEBCHVXX( THRESH, PATH )
- *
- * .. Scalar Arguments ..
- * DOUBLE PRECISION THRESH
- * CHARACTER*3 PATH
- * ..
- *
- * Purpose
- * ======
- *
- *> \details \b Purpose:
- *> \verbatim
- *>
- *> ZEBCHVXX will run Z**SVXX on a series of Hilbert matrices and then
- *> compare the error bounds returned by Z**SVXX to see if the returned
- *> answer indeed falls within those bounds.
- *>
- *> Eight test ratios will be computed. The tests will pass if they are .LT.
- *> THRESH. There are two cases that are determined by 1 / (SQRT( N ) * EPS).
- *> If that value is .LE. to the component wise reciprocal condition number,
- *> it uses the guaranteed case, other wise it uses the unguaranteed case.
- *>
- *> Test ratios:
- *> Let Xc be X_computed and Xt be X_truth.
- *> The norm used is the infinity norm.
- *>
- *> Let A be the guaranteed case and B be the unguaranteed case.
- *>
- *> 1. Normwise guaranteed forward error bound.
- *> A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
- *> ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
- *> If these conditions are met, the test ratio is set to be
- *> ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
- *> B: For this case, CGESVXX should just return 1. If it is less than
- *> one, treat it the same as in 1A. Otherwise it fails. (Set test
- *> ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)
- *>
- *> 2. Componentwise guaranteed forward error bound.
- *> A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
- *> for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
- *> If these conditions are met, the test ratio is set to be
- *> ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
- *> B: Same as normwise test ratio.
- *>
- *> 3. Backwards error.
- *> A: The test ratio is set to BERR/EPS.
- *> B: Same test ratio.
- *>
- *> 4. Reciprocal condition number.
- *> A: A condition number is computed with Xt and compared with the one
- *> returned from CGESVXX. Let RCONDc be the RCOND returned by CGESVXX
- *> and RCONDt be the RCOND from the truth value. Test ratio is set to
- *> MAX(RCONDc/RCONDt, RCONDt/RCONDc).
- *> B: Test ratio is set to 1 / (EPS * RCONDc).
- *>
- *> 5. Reciprocal normwise condition number.
- *> A: The test ratio is set to
- *> MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
- *> B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).
- *>
- *> 6. Reciprocal componentwise condition number.
- *> A: Test ratio is set to
- *> MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
- *> B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).
- *>
- *> .. Parameters ..
- *> NMAX is determined by the largest number in the inverse of the hilbert
- *> matrix. Precision is exhausted when the largest entry in it is greater
- *> than 2 to the power of the number of bits in the fraction of the data
- *> type used plus one, which is 24 for single precision.
- *> NMAX should be 6 for single and 11 for double.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZEBCHVXX( THRESH, PATH )
- IMPLICIT NONE
- * .. Scalar Arguments ..
- DOUBLE PRECISION THRESH
- CHARACTER*3 PATH
-
- INTEGER NMAX, NPARAMS, NERRBND, NTESTS, KL, KU
- PARAMETER (NMAX = 10, NPARAMS = 2, NERRBND = 3,
- $ NTESTS = 6)
-
- * .. Local Scalars ..
- INTEGER N, NRHS, INFO, I ,J, k, NFAIL, LDA,
- $ N_AUX_TESTS, LDAB, LDAFB
- CHARACTER FACT, TRANS, UPLO, EQUED
- CHARACTER*2 C2
- CHARACTER(3) NGUAR, CGUAR
- LOGICAL printed_guide
- DOUBLE PRECISION NCOND, CCOND, M, NORMDIF, NORMT, RCOND,
- $ RNORM, RINORM, SUMR, SUMRI, EPS,
- $ BERR(NMAX), RPVGRW, ORCOND,
- $ CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND,
- $ CWISE_RCOND, NWISE_RCOND,
- $ CONDTHRESH, ERRTHRESH
- COMPLEX*16 ZDUM
-
- * .. Local Arrays ..
- DOUBLE PRECISION TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS),
- $ S(NMAX),R(NMAX),C(NMAX),RWORK(3*NMAX),
- $ DIFF(NMAX, NMAX),
- $ ERRBND_N(NMAX*3), ERRBND_C(NMAX*3)
- INTEGER IPIV(NMAX)
- COMPLEX*16 A(NMAX,NMAX),INVHILB(NMAX,NMAX),X(NMAX,NMAX),
- $ WORK(NMAX*3*5), AF(NMAX, NMAX),B(NMAX, NMAX),
- $ ACOPY(NMAX, NMAX),
- $ AB( (NMAX-1)+(NMAX-1)+1, NMAX ),
- $ ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ),
- $ AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX )
-
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
-
- * .. External Subroutines ..
- EXTERNAL ZLAHILB, ZGESVXX, ZPOSVXX, ZSYSVXX,
- $ ZGBSVXX, ZLACPY, LSAMEN
- LOGICAL LSAMEN
-
- * .. Intrinsic Functions ..
- INTRINSIC SQRT, MAX, ABS, DBLE, DIMAG
-
- * .. Statement Functions ..
- DOUBLE PRECISION CABS1
-
- * .. Statement Function Definitions ..
- CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
-
- * .. Parameters ..
- INTEGER NWISE_I, CWISE_I
- PARAMETER (NWISE_I = 1, CWISE_I = 1)
- INTEGER BND_I, COND_I
- PARAMETER (BND_I = 2, COND_I = 3)
-
- * Create the loop to test out the Hilbert matrices
-
- FACT = 'E'
- UPLO = 'U'
- TRANS = 'N'
- EQUED = 'N'
- EPS = DLAMCH('Epsilon')
- NFAIL = 0
- N_AUX_TESTS = 0
- LDA = NMAX
- LDAB = (NMAX-1)+(NMAX-1)+1
- LDAFB = 2*(NMAX-1)+(NMAX-1)+1
- C2 = PATH( 2: 3 )
-
- * Main loop to test the different Hilbert Matrices.
-
- printed_guide = .false.
-
- DO N = 1 , NMAX
- PARAMS(1) = -1
- PARAMS(2) = -1
-
- KL = N-1
- KU = N-1
- NRHS = n
- M = MAX(SQRT(DBLE(N)), 10.0D+0)
-
- * Generate the Hilbert matrix, its inverse, and the
- * right hand side, all scaled by the LCM(1,..,2N-1).
- CALL ZLAHILB(N, N, A, LDA, INVHILB, LDA, B,
- $ LDA, WORK, INFO, PATH)
-
- * Copy A into ACOPY.
- CALL ZLACPY('ALL', N, N, A, NMAX, ACOPY, NMAX)
-
- * Store A in band format for GB tests
- DO J = 1, N
- DO I = 1, KL+KU+1
- AB( I, J ) = (0.0D+0,0.0D+0)
- END DO
- END DO
- DO J = 1, N
- DO I = MAX( 1, J-KU ), MIN( N, J+KL )
- AB( KU+1+I-J, J ) = A( I, J )
- END DO
- END DO
-
- * Copy AB into ABCOPY.
- DO J = 1, N
- DO I = 1, KL+KU+1
- ABCOPY( I, J ) = (0.0D+0,0.0D+0)
- END DO
- END DO
- CALL ZLACPY('ALL', KL+KU+1, N, AB, LDAB, ABCOPY, LDAB)
-
- * Call Z**SVXX with default PARAMS and N_ERR_BND = 3.
- IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
- CALL ZSYSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
- $ IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
- $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
- $ PARAMS, WORK, RWORK, INFO)
- ELSE IF ( LSAMEN( 2, C2, 'PO' ) ) THEN
- CALL ZPOSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
- $ EQUED, S, B, LDA, X, LDA, ORCOND,
- $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
- $ PARAMS, WORK, RWORK, INFO)
- ELSE IF ( LSAMEN( 2, C2, 'HE' ) ) THEN
- CALL ZHESVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
- $ IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
- $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
- $ PARAMS, WORK, RWORK, INFO)
- ELSE IF ( LSAMEN( 2, C2, 'GB' ) ) THEN
- CALL ZGBSVXX(FACT, TRANS, N, KL, KU, NRHS, ABCOPY,
- $ LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B,
- $ LDA, X, LDA, ORCOND, RPVGRW, BERR, NERRBND,
- $ ERRBND_N, ERRBND_C, NPARAMS, PARAMS, WORK, RWORK,
- $ INFO)
- ELSE
- CALL ZGESVXX(FACT, TRANS, N, NRHS, ACOPY, LDA, AF, LDA,
- $ IPIV, EQUED, R, C, B, LDA, X, LDA, ORCOND,
- $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
- $ PARAMS, WORK, RWORK, INFO)
- END IF
-
- N_AUX_TESTS = N_AUX_TESTS + 1
- IF (ORCOND .LT. EPS) THEN
- ! Either factorization failed or the matrix is flagged, and 1 <=
- ! INFO <= N+1. We don't decide based on rcond anymore.
- ! IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN
- ! NFAIL = NFAIL + 1
- ! WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND
- ! END IF
- ELSE
- ! Either everything succeeded (INFO == 0) or some solution failed
- ! to converge (INFO > N+1).
- IF (INFO .GT. 0 .AND. INFO .LE. N+1) THEN
- NFAIL = NFAIL + 1
- WRITE (*, FMT=8000) C2, N, INFO, ORCOND, RCOND
- END IF
- END IF
-
- * Calculating the difference between Z**SVXX's X and the true X.
- DO I = 1,N
- DO J =1,NRHS
- DIFF(I,J) = X(I,J) - INVHILB(I,J)
- END DO
- END DO
-
- * Calculating the RCOND
- RNORM = 0
- RINORM = 0
- IF ( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) .OR.
- $ LSAMEN( 2, C2, 'HE' ) ) THEN
- DO I = 1, N
- SUMR = 0
- SUMRI = 0
- DO J = 1, N
- SUMR = SUMR + S(I) * CABS1(A(I,J)) * S(J)
- SUMRI = SUMRI + CABS1(INVHILB(I, J)) / (S(J) * S(I))
- END DO
- RNORM = MAX(RNORM,SUMR)
- RINORM = MAX(RINORM,SUMRI)
- END DO
- ELSE IF ( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'GB' ) )
- $ THEN
- DO I = 1, N
- SUMR = 0
- SUMRI = 0
- DO J = 1, N
- SUMR = SUMR + R(I) * CABS1(A(I,J)) * C(J)
- SUMRI = SUMRI + CABS1(INVHILB(I, J)) / (R(J) * C(I))
- END DO
- RNORM = MAX(RNORM,SUMR)
- RINORM = MAX(RINORM,SUMRI)
- END DO
- END IF
-
- RNORM = RNORM / CABS1(A(1, 1))
- RCOND = 1.0D+0/(RNORM * RINORM)
-
- * Calculating the R for normwise rcond.
- DO I = 1, N
- RINV(I) = 0.0D+0
- END DO
- DO J = 1, N
- DO I = 1, N
- RINV(I) = RINV(I) + CABS1(A(I,J))
- END DO
- END DO
-
- * Calculating the Normwise rcond.
- RINORM = 0.0D+0
- DO I = 1, N
- SUMRI = 0.0D+0
- DO J = 1, N
- SUMRI = SUMRI + CABS1(INVHILB(I,J) * RINV(J))
- END DO
- RINORM = MAX(RINORM, SUMRI)
- END DO
-
- ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
- ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
- NCOND = CABS1(A(1,1)) / RINORM
-
- CONDTHRESH = M * EPS
- ERRTHRESH = M * EPS
-
- DO K = 1, NRHS
- NORMT = 0.0D+0
- NORMDIF = 0.0D+0
- CWISE_ERR = 0.0D+0
- DO I = 1, N
- NORMT = MAX(CABS1(INVHILB(I, K)), NORMT)
- NORMDIF = MAX(CABS1(X(I,K) - INVHILB(I,K)), NORMDIF)
- IF (INVHILB(I,K) .NE. 0.0D+0) THEN
- CWISE_ERR = MAX(CABS1(X(I,K) - INVHILB(I,K))
- $ /CABS1(INVHILB(I,K)), CWISE_ERR)
- ELSE IF (X(I, K) .NE. 0.0D+0) THEN
- CWISE_ERR = DLAMCH('OVERFLOW')
- END IF
- END DO
- IF (NORMT .NE. 0.0D+0) THEN
- NWISE_ERR = NORMDIF / NORMT
- ELSE IF (NORMDIF .NE. 0.0D+0) THEN
- NWISE_ERR = DLAMCH('OVERFLOW')
- ELSE
- NWISE_ERR = 0.0D+0
- ENDIF
-
- DO I = 1, N
- RINV(I) = 0.0D+0
- END DO
- DO J = 1, N
- DO I = 1, N
- RINV(I) = RINV(I) + CABS1(A(I, J) * INVHILB(J, K))
- END DO
- END DO
- RINORM = 0.0D+0
- DO I = 1, N
- SUMRI = 0.0D+0
- DO J = 1, N
- SUMRI = SUMRI
- $ + CABS1(INVHILB(I, J) * RINV(J) / INVHILB(I, K))
- END DO
- RINORM = MAX(RINORM, SUMRI)
- END DO
- ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
- ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
- CCOND = CABS1(A(1,1))/RINORM
-
- ! Forward error bound tests
- NWISE_BND = ERRBND_N(K + (BND_I-1)*NRHS)
- CWISE_BND = ERRBND_C(K + (BND_I-1)*NRHS)
- NWISE_RCOND = ERRBND_N(K + (COND_I-1)*NRHS)
- CWISE_RCOND = ERRBND_C(K + (COND_I-1)*NRHS)
- ! write (*,*) 'nwise : ', n, k, ncond, nwise_rcond,
- ! $ condthresh, ncond.ge.condthresh
- ! write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh
- IF (NCOND .GE. CONDTHRESH) THEN
- NGUAR = 'YES'
- IF (NWISE_BND .GT. ERRTHRESH) THEN
- TSTRAT(1) = 1/(2.0D+0*EPS)
- ELSE
- IF (NWISE_BND .NE. 0.0D+0) THEN
- TSTRAT(1) = NWISE_ERR / NWISE_BND
- ELSE IF (NWISE_ERR .NE. 0.0D+0) THEN
- TSTRAT(1) = 1/(16.0*EPS)
- ELSE
- TSTRAT(1) = 0.0D+0
- END IF
- IF (TSTRAT(1) .GT. 1.0D+0) THEN
- TSTRAT(1) = 1/(4.0D+0*EPS)
- END IF
- END IF
- ELSE
- NGUAR = 'NO'
- IF (NWISE_BND .LT. 1.0D+0) THEN
- TSTRAT(1) = 1/(8.0D+0*EPS)
- ELSE
- TSTRAT(1) = 1.0D+0
- END IF
- END IF
- ! write (*,*) 'cwise : ', n, k, ccond, cwise_rcond,
- ! $ condthresh, ccond.ge.condthresh
- ! write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh
- IF (CCOND .GE. CONDTHRESH) THEN
- CGUAR = 'YES'
- IF (CWISE_BND .GT. ERRTHRESH) THEN
- TSTRAT(2) = 1/(2.0D+0*EPS)
- ELSE
- IF (CWISE_BND .NE. 0.0D+0) THEN
- TSTRAT(2) = CWISE_ERR / CWISE_BND
- ELSE IF (CWISE_ERR .NE. 0.0D+0) THEN
- TSTRAT(2) = 1/(16.0D+0*EPS)
- ELSE
- TSTRAT(2) = 0.0D+0
- END IF
- IF (TSTRAT(2) .GT. 1.0D+0) TSTRAT(2) = 1/(4.0D+0*EPS)
- END IF
- ELSE
- CGUAR = 'NO'
- IF (CWISE_BND .LT. 1.0D+0) THEN
- TSTRAT(2) = 1/(8.0D+0*EPS)
- ELSE
- TSTRAT(2) = 1.0D+0
- END IF
- END IF
-
- ! Backwards error test
- TSTRAT(3) = BERR(K)/EPS
-
- ! Condition number tests
- TSTRAT(4) = RCOND / ORCOND
- IF (RCOND .GE. CONDTHRESH .AND. TSTRAT(4) .LT. 1.0D+0)
- $ TSTRAT(4) = 1.0D+0 / TSTRAT(4)
-
- TSTRAT(5) = NCOND / NWISE_RCOND
- IF (NCOND .GE. CONDTHRESH .AND. TSTRAT(5) .LT. 1.0D+0)
- $ TSTRAT(5) = 1.0D+0 / TSTRAT(5)
-
- TSTRAT(6) = CCOND / NWISE_RCOND
- IF (CCOND .GE. CONDTHRESH .AND. TSTRAT(6) .LT. 1.0D+0)
- $ TSTRAT(6) = 1.0D+0 / TSTRAT(6)
-
- DO I = 1, NTESTS
- IF (TSTRAT(I) .GT. THRESH) THEN
- IF (.NOT.PRINTED_GUIDE) THEN
- WRITE(*,*)
- WRITE( *, 9996) 1
- WRITE( *, 9995) 2
- WRITE( *, 9994) 3
- WRITE( *, 9993) 4
- WRITE( *, 9992) 5
- WRITE( *, 9991) 6
- WRITE( *, 9990) 7
- WRITE( *, 9989) 8
- WRITE(*,*)
- PRINTED_GUIDE = .TRUE.
- END IF
- WRITE( *, 9999) C2, N, K, NGUAR, CGUAR, I, TSTRAT(I)
- NFAIL = NFAIL + 1
- END IF
- END DO
- END DO
-
- c$$$ WRITE(*,*)
- c$$$ WRITE(*,*) 'Normwise Error Bounds'
- c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i)
- c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i)
- c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i)
- c$$$ WRITE(*,*)
- c$$$ WRITE(*,*) 'Componentwise Error Bounds'
- c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i)
- c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i)
- c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i)
- c$$$ print *, 'Info: ', info
- c$$$ WRITE(*,*)
- * WRITE(*,*) 'TSTRAT: ',TSTRAT
-
- END DO
-
- WRITE(*,*)
- IF( NFAIL .GT. 0 ) THEN
- WRITE(*,9998) C2, NFAIL, NTESTS*N+N_AUX_TESTS
- ELSE
- WRITE(*,9997) C2
- END IF
- 9999 FORMAT( ' Z', A2, 'SVXX: N =', I2, ', RHS = ', I2,
- $ ', NWISE GUAR. = ', A, ', CWISE GUAR. = ', A,
- $ ' test(',I1,') =', G12.5 )
- 9998 FORMAT( ' Z', A2, 'SVXX: ', I6, ' out of ', I6,
- $ ' tests failed to pass the threshold' )
- 9997 FORMAT( ' Z', A2, 'SVXX passed the tests of error bounds' )
- * Test ratios.
- 9996 FORMAT( 3X, I2, ': Normwise guaranteed forward error', / 5X,
- $ 'Guaranteed case: if norm ( abs( Xc - Xt )',
- $ ' / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ), then',
- $ / 5X,
- $ 'ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS')
- 9995 FORMAT( 3X, I2, ': Componentwise guaranteed forward error' )
- 9994 FORMAT( 3X, I2, ': Backwards error' )
- 9993 FORMAT( 3X, I2, ': Reciprocal condition number' )
- 9992 FORMAT( 3X, I2, ': Reciprocal normwise condition number' )
- 9991 FORMAT( 3X, I2, ': Raw normwise error estimate' )
- 9990 FORMAT( 3X, I2, ': Reciprocal componentwise condition number' )
- 9989 FORMAT( 3X, I2, ': Raw componentwise error estimate' )
-
- 8000 FORMAT( ' Z', A2, 'SVXX: N =', I2, ', INFO = ', I3,
- $ ', ORCOND = ', G12.5, ', real RCOND = ', G12.5 )
- *
- * End of ZEBCHVXX
- *
- END
|