|
- *> \brief \b SSYT01_3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSYT01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
- * LDC, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDAFAC, LDC, N
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
- * $ E( * ), RWORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSYT01_3 reconstructs a symmetric indefinite matrix A from its
- *> block L*D*L' or U*D*U' factorization computed by SSYTRF_RK
- *> (or SSYTRF_BK) and computes the residual
- *> norm( C - A ) / ( N * norm(A) * EPS ),
- *> where C is the reconstructed matrix and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The original symmetric matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in] AFAC
- *> \verbatim
- *> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
- *> Diagonal of the block diagonal matrix D and factors U or L
- *> as computed by SSYTRF_RK and SSYTRF_BK:
- *> a) ONLY diagonal elements of the symmetric block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> should be provided on entry in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *> \endverbatim
- *>
- *> \param[in] LDAFAC
- *> \verbatim
- *> LDAFAC is INTEGER
- *> The leading dimension of the array AFAC.
- *> LDAFAC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N)
- *> On entry, contains the superdiagonal (or subdiagonal)
- *> elements of the symmetric block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
- *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from SSYTRF_RK (or SSYTRF_BK).
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC,N)
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
- *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SSYT01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
- $ LDC, RWORK, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDAFAC, LDC, N
- REAL RESID
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- REAL A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
- $ E( * ), RWORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J
- REAL ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANSY
- EXTERNAL LSAME, SLAMCH, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SLASET, SLAVSY_ROOK, SSYCONVF_ROOK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * a) Revert to multiplyers of L
- *
- CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
- *
- * 1) Determine EPS and the norm of A.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
- *
- * 2) Initialize C to the identity matrix.
- *
- CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC )
- *
- * 3) Call SLAVSY_ROOK to form the product D * U' (or D * L' ).
- *
- CALL SLAVSY_ROOK( UPLO, 'Transpose', 'Non-unit', N, N, AFAC,
- $ LDAFAC, IPIV, C, LDC, INFO )
- *
- * 4) Call SLAVSY_ROOK again to multiply by U (or L ).
- *
- CALL SLAVSY_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
- $ LDAFAC, IPIV, C, LDC, INFO )
- *
- * 5) Compute the difference C - A.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO J = 1, N
- DO I = 1, J
- C( I, J ) = C( I, J ) - A( I, J )
- END DO
- END DO
- ELSE
- DO J = 1, N
- DO I = J, N
- C( I, J ) = C( I, J ) - A( I, J )
- END DO
- END DO
- END IF
- *
- * 6) Compute norm( C - A ) / ( N * norm(A) * EPS )
- *
- RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
- END IF
-
- *
- * b) Convert to factor of L (or U)
- *
- CALL SSYCONVF_ROOK( UPLO, 'C', N, AFAC, LDAFAC, E, IPIV, INFO )
- *
- RETURN
- *
- * End of SSYT01_3
- *
- END
|