|
- *> \brief \b SPTT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPTT01( N, D, E, DF, EF, WORK, RESID )
- *
- * .. Scalar Arguments ..
- * INTEGER N
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL D( * ), DF( * ), E( * ), EF( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
- *> factorization and computes the residual
- *> norm(L*D*L' - A) / ( n * norm(A) * EPS ),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGTER
- *> The order of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The n diagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in] DF
- *> \verbatim
- *> DF is REAL array, dimension (N)
- *> The n diagonal elements of the factor L from the L*D*L'
- *> factorization of A.
- *> \endverbatim
- *>
- *> \param[in] EF
- *> \verbatim
- *> EF is REAL array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the factor L from the
- *> L*D*L' factorization of A.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(L*D*L' - A) / (n * norm(A) * EPS)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SPTT01( N, D, E, DF, EF, WORK, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER N
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL D( * ), DF( * ), E( * ), EF( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I
- REAL ANORM, DE, EPS
- * ..
- * .. External Functions ..
- REAL SLAMCH
- EXTERNAL SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- EPS = SLAMCH( 'Epsilon' )
- *
- * Construct the difference L*D*L' - A.
- *
- WORK( 1 ) = DF( 1 ) - D( 1 )
- DO 10 I = 1, N - 1
- DE = DF( I )*EF( I )
- WORK( N+I ) = DE - E( I )
- WORK( 1+I ) = DE*EF( I ) + DF( I+1 ) - D( I+1 )
- 10 CONTINUE
- *
- * Compute the 1-norms of the tridiagonal matrices A and WORK.
- *
- IF( N.EQ.1 ) THEN
- ANORM = D( 1 )
- RESID = ABS( WORK( 1 ) )
- ELSE
- ANORM = MAX( D( 1 )+ABS( E( 1 ) ), D( N )+ABS( E( N-1 ) ) )
- RESID = MAX( ABS( WORK( 1 ) )+ABS( WORK( N+1 ) ),
- $ ABS( WORK( N ) )+ABS( WORK( 2*N-1 ) ) )
- DO 20 I = 2, N - 1
- ANORM = MAX( ANORM, D( I )+ABS( E( I ) )+ABS( E( I-1 ) ) )
- RESID = MAX( RESID, ABS( WORK( I ) )+ABS( WORK( N+I-1 ) )+
- $ ABS( WORK( N+I ) ) )
- 20 CONTINUE
- END IF
- *
- * Compute norm(L*D*L' - A) / (n * norm(A) * EPS)
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
- END IF
- *
- RETURN
- *
- * End of SPTT01
- *
- END
|