|
- *> \brief \b CPTT02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPTT02( UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDB, LDX, N, NRHS
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL D( * )
- * COMPLEX B( LDB, * ), E( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPTT02 computes the residual for the solution to a symmetric
- *> tridiagonal system of equations:
- *> RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the superdiagonal or the subdiagonal of the
- *> tridiagonal matrix A is stored.
- *> = 'U': E is the superdiagonal of A
- *> = 'L': E is the subdiagonal of A
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGTER
- *> The order of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The n diagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is COMPLEX array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension (LDX,NRHS)
- *> The n by nrhs matrix of solution vectors X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the n by nrhs matrix of right hand side vectors B.
- *> On exit, B is overwritten with the difference B - A*X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(B - A*X) / (norm(A) * norm(X) * EPS)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CPTT02( UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDB, LDX, N, NRHS
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL D( * )
- COMPLEX B( LDB, * ), E( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J
- REAL ANORM, BNORM, EPS, XNORM
- * ..
- * .. External Functions ..
- REAL CLANHT, SCASUM, SLAMCH
- EXTERNAL CLANHT, SCASUM, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. External Subroutines ..
- EXTERNAL CLAPTM
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Compute the 1-norm of the tridiagonal matrix A.
- *
- ANORM = CLANHT( '1', N, D, E )
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Compute B - A*X.
- *
- CALL CLAPTM( UPLO, N, NRHS, -ONE, D, E, X, LDX, ONE, B, LDB )
- *
- * Compute the maximum over the number of right hand sides of
- * norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
- *
- RESID = ZERO
- DO 10 J = 1, NRHS
- BNORM = SCASUM( N, B( 1, J ), 1 )
- XNORM = SCASUM( N, X( 1, J ), 1 )
- IF( XNORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- ELSE
- RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
- END IF
- 10 CONTINUE
- *
- RETURN
- *
- * End of CPTT02
- *
- END
|