|
- *> \brief \b CGBT02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
- * LDB, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGBT02 computes the residual for a solution of a banded system of
- *> equations op(A)*X = B:
- *> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ),
- *> where op(A) = A, A**T, or A**H, depending on TRANS, and EPS is the
- *> machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the form of the system of equations:
- *> = 'N': A * X = B (No transpose)
- *> = 'T': A**T * X = B (Transpose)
- *> = 'C': A**H * X = B (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns of B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The original matrix A in band storage, stored in rows 1 to
- *> KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. If TRANS = 'N',
- *> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the right hand side vectors for the system of
- *> linear equations.
- *> On exit, B is overwritten with the difference B - A*X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. IF TRANS = 'N',
- *> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (MAX(1,LRWORK)),
- *> where LRWORK >= M when TRANS = 'T' or 'C'; otherwise, RWORK
- *> is not referenced.
- *> \endverbatim
- *
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> The maximum over the number of right hand sides of
- *> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
- $ LDB, RWORK, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX CONE
- PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I1, I2, J, KD, N1
- REAL ANORM, BNORM, EPS, TEMP, XNORM
- COMPLEX CDUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME, SISNAN
- REAL SCASUM, SLAMCH
- EXTERNAL LSAME, SCASUM, SISNAN, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGBMV
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, MAX, MIN, REAL
- * ..
- * .. Statement Function definitions ..
- CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Quick return if N = 0 pr NRHS = 0
- *
- IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = ZERO
- IF( LSAME( TRANS, 'N' ) ) THEN
- *
- * Find norm1(A).
- *
- KD = KU + 1
- DO 10 J = 1, N
- I1 = MAX( KD+1-J, 1 )
- I2 = MIN( KD+M-J, KL+KD )
- IF( I2.GE.I1 ) THEN
- TEMP = SCASUM( I2-I1+1, A( I1, J ), 1 )
- IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
- END IF
- 10 CONTINUE
- ELSE
- *
- * Find normI(A).
- *
- DO 12 I1 = 1, M
- RWORK( I1 ) = ZERO
- 12 CONTINUE
- DO 16 J = 1, N
- KD = KU + 1 - J
- DO 14 I1 = MAX( 1, J-KU ), MIN( M, J+KL )
- RWORK( I1 ) = RWORK( I1 ) + CABS1( A( KD+I1, J ) )
- 14 CONTINUE
- 16 CONTINUE
- DO 18 I1 = 1, M
- TEMP = RWORK( I1 )
- IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
- 18 CONTINUE
- END IF
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
- N1 = N
- ELSE
- N1 = M
- END IF
- *
- * Compute B - op(A)*X
- *
- DO 20 J = 1, NRHS
- CALL CGBMV( TRANS, M, N, KL, KU, -CONE, A, LDA, X( 1, J ), 1,
- $ CONE, B( 1, J ), 1 )
- 20 CONTINUE
- *
- * Compute the maximum over the number of right hand sides of
- * norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
- *
- RESID = ZERO
- DO 30 J = 1, NRHS
- BNORM = SCASUM( N1, B( 1, J ), 1 )
- XNORM = SCASUM( N1, X( 1, J ), 1 )
- IF( XNORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- ELSE
- RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
- END IF
- 30 CONTINUE
- *
- RETURN
- *
- * End of CGBT02
- *
- END
|