|
- *> \brief \b DERRGT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DERRGT( PATH, NUNIT )
- *
- * .. Scalar Arguments ..
- * CHARACTER*3 PATH
- * INTEGER NUNIT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DERRGT tests the error exits for the DOUBLE PRECISION tridiagonal
- *> routines.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] PATH
- *> \verbatim
- *> PATH is CHARACTER*3
- *> The LAPACK path name for the routines to be tested.
- *> \endverbatim
- *>
- *> \param[in] NUNIT
- *> \verbatim
- *> NUNIT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DERRGT( PATH, NUNIT )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER*3 PATH
- INTEGER NUNIT
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER NMAX
- PARAMETER ( NMAX = 2 )
- * ..
- * .. Local Scalars ..
- CHARACTER*2 C2
- INTEGER INFO
- DOUBLE PRECISION ANORM, RCOND
- * ..
- * .. Local Arrays ..
- INTEGER IP( NMAX ), IW( NMAX )
- DOUBLE PRECISION B( NMAX ), C( NMAX ), CF( NMAX ), D( NMAX ),
- $ DF( NMAX ), E( NMAX ), EF( NMAX ), F( NMAX ),
- $ R1( NMAX ), R2( NMAX ), W( NMAX ), X( NMAX )
- * ..
- * .. External Functions ..
- LOGICAL LSAMEN
- EXTERNAL LSAMEN
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAESM, CHKXER, DGTCON, DGTRFS, DGTTRF, DGTTRS,
- $ DPTCON, DPTRFS, DPTTRF, DPTTRS
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NOUT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NOUT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Executable Statements ..
- *
- NOUT = NUNIT
- WRITE( NOUT, FMT = * )
- C2 = PATH( 2: 3 )
- D( 1 ) = 1.D0
- D( 2 ) = 2.D0
- DF( 1 ) = 1.D0
- DF( 2 ) = 2.D0
- E( 1 ) = 3.D0
- E( 2 ) = 4.D0
- EF( 1 ) = 3.D0
- EF( 2 ) = 4.D0
- ANORM = 1.0D0
- OK = .TRUE.
- *
- IF( LSAMEN( 2, C2, 'GT' ) ) THEN
- *
- * Test error exits for the general tridiagonal routines.
- *
- * DGTTRF
- *
- SRNAMT = 'DGTTRF'
- INFOT = 1
- CALL DGTTRF( -1, C, D, E, F, IP, INFO )
- CALL CHKXER( 'DGTTRF', INFOT, NOUT, LERR, OK )
- *
- * DGTTRS
- *
- SRNAMT = 'DGTTRS'
- INFOT = 1
- CALL DGTTRS( '/', 0, 0, C, D, E, F, IP, X, 1, INFO )
- CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL DGTTRS( 'N', -1, 0, C, D, E, F, IP, X, 1, INFO )
- CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL DGTTRS( 'N', 0, -1, C, D, E, F, IP, X, 1, INFO )
- CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
- INFOT = 10
- CALL DGTTRS( 'N', 2, 1, C, D, E, F, IP, X, 1, INFO )
- CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
- *
- * DGTRFS
- *
- SRNAMT = 'DGTRFS'
- INFOT = 1
- CALL DGTRFS( '/', 0, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 1,
- $ R1, R2, W, IW, INFO )
- CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL DGTRFS( 'N', -1, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X,
- $ 1, R1, R2, W, IW, INFO )
- CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
- INFOT = 3
- CALL DGTRFS( 'N', 0, -1, C, D, E, CF, DF, EF, F, IP, B, 1, X,
- $ 1, R1, R2, W, IW, INFO )
- CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
- INFOT = 13
- CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 2,
- $ R1, R2, W, IW, INFO )
- CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
- INFOT = 15
- CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 2, X, 1,
- $ R1, R2, W, IW, INFO )
- CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
- *
- * DGTCON
- *
- SRNAMT = 'DGTCON'
- INFOT = 1
- CALL DGTCON( '/', 0, C, D, E, F, IP, ANORM, RCOND, W, IW,
- $ INFO )
- CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL DGTCON( 'I', -1, C, D, E, F, IP, ANORM, RCOND, W, IW,
- $ INFO )
- CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL DGTCON( 'I', 0, C, D, E, F, IP, -ANORM, RCOND, W, IW,
- $ INFO )
- CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
- *
- ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
- *
- * Test error exits for the positive definite tridiagonal
- * routines.
- *
- * DPTTRF
- *
- SRNAMT = 'DPTTRF'
- INFOT = 1
- CALL DPTTRF( -1, D, E, INFO )
- CALL CHKXER( 'DPTTRF', INFOT, NOUT, LERR, OK )
- *
- * DPTTRS
- *
- SRNAMT = 'DPTTRS'
- INFOT = 1
- CALL DPTTRS( -1, 0, D, E, X, 1, INFO )
- CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL DPTTRS( 0, -1, D, E, X, 1, INFO )
- CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
- INFOT = 6
- CALL DPTTRS( 2, 1, D, E, X, 1, INFO )
- CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
- *
- * DPTRFS
- *
- SRNAMT = 'DPTRFS'
- INFOT = 1
- CALL DPTRFS( -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
- CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
- INFOT = 2
- CALL DPTRFS( 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
- CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
- INFOT = 8
- CALL DPTRFS( 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, INFO )
- CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
- INFOT = 10
- CALL DPTRFS( 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, INFO )
- CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
- *
- * DPTCON
- *
- SRNAMT = 'DPTCON'
- INFOT = 1
- CALL DPTCON( -1, D, E, ANORM, RCOND, W, INFO )
- CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK )
- INFOT = 4
- CALL DPTCON( 0, D, E, -ANORM, RCOND, W, INFO )
- CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK )
- END IF
- *
- * Print a summary line.
- *
- CALL ALAESM( PATH, OK, NOUT )
- *
- RETURN
- *
- * End of DERRGT
- *
- END
|