|
- *> \brief \b ZLATM6
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
- * BETA, WX, WY, S, DIF )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDX, LDY, N, TYPE
- * COMPLEX*16 ALPHA, BETA, WX, WY
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION DIF( * ), S( * )
- * COMPLEX*16 A( LDA, * ), B( LDA, * ), X( LDX, * ),
- * $ Y( LDY, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLATM6 generates test matrices for the generalized eigenvalue
- *> problem, their corresponding right and left eigenvector matrices,
- *> and also reciprocal condition numbers for all eigenvalues and
- *> the reciprocal condition numbers of eigenvectors corresponding to
- *> the 1th and 5th eigenvalues.
- *>
- *> Test Matrices
- *> =============
- *>
- *> Two kinds of test matrix pairs
- *> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
- *> are used in the tests:
- *>
- *> Type 1:
- *> Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
- *> 0 2+a 0 0 0 0 1 0 0 0
- *> 0 0 3+a 0 0 0 0 1 0 0
- *> 0 0 0 4+a 0 0 0 0 1 0
- *> 0 0 0 0 5+a , 0 0 0 0 1
- *> and Type 2:
- *> Da = 1+i 0 0 0 0 Db = 1 0 0 0 0
- *> 0 1-i 0 0 0 0 1 0 0 0
- *> 0 0 1 0 0 0 0 1 0 0
- *> 0 0 0 (1+a)+(1+b)i 0 0 0 0 1 0
- *> 0 0 0 0 (1+a)-(1+b)i, 0 0 0 0 1 .
- *>
- *> In both cases the same inverse(YH) and inverse(X) are used to compute
- *> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
- *>
- *> YH: = 1 0 -y y -y X = 1 0 -x -x x
- *> 0 1 -y y -y 0 1 x -x -x
- *> 0 0 1 0 0 0 0 1 0 0
- *> 0 0 0 1 0 0 0 0 1 0
- *> 0 0 0 0 1, 0 0 0 0 1 , where
- *>
- *> a, b, x and y will have all values independently of each other.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TYPE
- *> \verbatim
- *> TYPE is INTEGER
- *> Specifies the problem type (see further details).
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> Size of the matrices A and B.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA, N).
- *> On exit A N-by-N is initialized according to TYPE.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A and of B.
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDA, N).
- *> On exit B N-by-N is initialized according to TYPE.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX, N).
- *> On exit X is the N-by-N matrix of right eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of X.
- *> \endverbatim
- *>
- *> \param[out] Y
- *> \verbatim
- *> Y is COMPLEX*16 array, dimension (LDY, N).
- *> On exit Y is the N-by-N matrix of left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDY
- *> \verbatim
- *> LDY is INTEGER
- *> The leading dimension of Y.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX*16
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is COMPLEX*16
- *> \verbatim
- *> Weighting constants for matrix A.
- *> \endverbatim
- *>
- *> \param[in] WX
- *> \verbatim
- *> WX is COMPLEX*16
- *> Constant for right eigenvector matrix.
- *> \endverbatim
- *>
- *> \param[in] WY
- *> \verbatim
- *> WY is COMPLEX*16
- *> Constant for left eigenvector matrix.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (N)
- *> S(i) is the reciprocal condition number for eigenvalue i.
- *> \endverbatim
- *>
- *> \param[out] DIF
- *> \verbatim
- *> DIF is DOUBLE PRECISION array, dimension (N)
- *> DIF(i) is the reciprocal condition number for eigenvector i.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_matgen
- *
- * =====================================================================
- SUBROUTINE ZLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
- $ BETA, WX, WY, S, DIF )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDX, LDY, N, TYPE
- COMPLEX*16 ALPHA, BETA, WX, WY
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION DIF( * ), S( * )
- COMPLEX*16 A( LDA, * ), B( LDA, * ), X( LDX, * ),
- $ Y( LDY, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION RONE, TWO, THREE
- PARAMETER ( RONE = 1.0D+0, TWO = 2.0D+0, THREE = 3.0D+0 )
- COMPLEX*16 ZERO, ONE
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
- $ ONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION RWORK( 50 )
- COMPLEX*16 WORK( 26 ), Z( 8, 8 )
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CDABS, DBLE, DCMPLX, DCONJG, SQRT
- * ..
- * .. External Subroutines ..
- EXTERNAL ZGESVD, ZLACPY, ZLAKF2
- * ..
- * .. Executable Statements ..
- *
- * Generate test problem ...
- * (Da, Db) ...
- *
- DO 20 I = 1, N
- DO 10 J = 1, N
- *
- IF( I.EQ.J ) THEN
- A( I, I ) = DCMPLX( I ) + ALPHA
- B( I, I ) = ONE
- ELSE
- A( I, J ) = ZERO
- B( I, J ) = ZERO
- END IF
- *
- 10 CONTINUE
- 20 CONTINUE
- IF( TYPE.EQ.2 ) THEN
- A( 1, 1 ) = DCMPLX( RONE, RONE )
- A( 2, 2 ) = DCONJG( A( 1, 1 ) )
- A( 3, 3 ) = ONE
- A( 4, 4 ) = DCMPLX( DBLE( ONE+ALPHA ), DBLE( ONE+BETA ) )
- A( 5, 5 ) = DCONJG( A( 4, 4 ) )
- END IF
- *
- * Form X and Y
- *
- CALL ZLACPY( 'F', N, N, B, LDA, Y, LDY )
- Y( 3, 1 ) = -DCONJG( WY )
- Y( 4, 1 ) = DCONJG( WY )
- Y( 5, 1 ) = -DCONJG( WY )
- Y( 3, 2 ) = -DCONJG( WY )
- Y( 4, 2 ) = DCONJG( WY )
- Y( 5, 2 ) = -DCONJG( WY )
- *
- CALL ZLACPY( 'F', N, N, B, LDA, X, LDX )
- X( 1, 3 ) = -WX
- X( 1, 4 ) = -WX
- X( 1, 5 ) = WX
- X( 2, 3 ) = WX
- X( 2, 4 ) = -WX
- X( 2, 5 ) = -WX
- *
- * Form (A, B)
- *
- B( 1, 3 ) = WX + WY
- B( 2, 3 ) = -WX + WY
- B( 1, 4 ) = WX - WY
- B( 2, 4 ) = WX - WY
- B( 1, 5 ) = -WX + WY
- B( 2, 5 ) = WX + WY
- A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 )
- A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 )
- A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 )
- A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 )
- A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 )
- A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 )
- *
- * Compute condition numbers
- *
- S( 1 ) = RONE / SQRT( ( RONE+THREE*CDABS( WY )*CDABS( WY ) ) /
- $ ( RONE+CDABS( A( 1, 1 ) )*CDABS( A( 1, 1 ) ) ) )
- S( 2 ) = RONE / SQRT( ( RONE+THREE*CDABS( WY )*CDABS( WY ) ) /
- $ ( RONE+CDABS( A( 2, 2 ) )*CDABS( A( 2, 2 ) ) ) )
- S( 3 ) = RONE / SQRT( ( RONE+TWO*CDABS( WX )*CDABS( WX ) ) /
- $ ( RONE+CDABS( A( 3, 3 ) )*CDABS( A( 3, 3 ) ) ) )
- S( 4 ) = RONE / SQRT( ( RONE+TWO*CDABS( WX )*CDABS( WX ) ) /
- $ ( RONE+CDABS( A( 4, 4 ) )*CDABS( A( 4, 4 ) ) ) )
- S( 5 ) = RONE / SQRT( ( RONE+TWO*CDABS( WX )*CDABS( WX ) ) /
- $ ( RONE+CDABS( A( 5, 5 ) )*CDABS( A( 5, 5 ) ) ) )
- *
- CALL ZLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 8 )
- CALL ZGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
- $ WORK( 3 ), 24, RWORK( 9 ), INFO )
- DIF( 1 ) = RWORK( 8 )
- *
- CALL ZLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 8 )
- CALL ZGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
- $ WORK( 3 ), 24, RWORK( 9 ), INFO )
- DIF( 5 ) = RWORK( 8 )
- *
- RETURN
- *
- * End of ZLATM6
- *
- END
|