|
- *> \brief \b ZLAGSY
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, K, LDA, N
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( 4 )
- * DOUBLE PRECISION D( * )
- * COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLAGSY generates a complex symmetric matrix A, by pre- and post-
- *> multiplying a real diagonal matrix D with a random unitary matrix:
- *> A = U*D*U**T. The semi-bandwidth may then be reduced to k by
- *> additional unitary transformations.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of nonzero subdiagonals within the band of A.
- *> 0 <= K <= N-1.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The diagonal elements of the diagonal matrix D.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The generated n by n symmetric matrix A (the full matrix is
- *> stored).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= N.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry, the seed of the random number generator; the array
- *> elements must be between 0 and 4095, and ISEED(4) must be
- *> odd.
- *> On exit, the seed is updated.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_matgen
- *
- * =====================================================================
- SUBROUTINE ZLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, K, LDA, N
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( 4 )
- DOUBLE PRECISION D( * )
- COMPLEX*16 A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ZERO, ONE, HALF
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
- $ ONE = ( 1.0D+0, 0.0D+0 ),
- $ HALF = ( 0.5D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, II, J, JJ
- DOUBLE PRECISION WN
- COMPLEX*16 ALPHA, TAU, WA, WB
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZAXPY, ZGEMV, ZGERC, ZLACGV, ZLARNV,
- $ ZSCAL, ZSYMV
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DZNRM2
- COMPLEX*16 ZDOTC
- EXTERNAL DZNRM2, ZDOTC
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- END IF
- IF( INFO.LT.0 ) THEN
- CALL XERBLA( 'ZLAGSY', -INFO )
- RETURN
- END IF
- *
- * initialize lower triangle of A to diagonal matrix
- *
- DO 20 J = 1, N
- DO 10 I = J + 1, N
- A( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- DO 30 I = 1, N
- A( I, I ) = D( I )
- 30 CONTINUE
- *
- * Generate lower triangle of symmetric matrix
- *
- DO 60 I = N - 1, 1, -1
- *
- * generate random reflection
- *
- CALL ZLARNV( 3, ISEED, N-I+1, WORK )
- WN = DZNRM2( N-I+1, WORK, 1 )
- WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = WORK( 1 ) + WA
- CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
- WORK( 1 ) = ONE
- TAU = DBLE( WB / WA )
- END IF
- *
- * apply random reflection to A(i:n,i:n) from the left
- * and the right
- *
- * compute y := tau * A * conjg(u)
- *
- CALL ZLACGV( N-I+1, WORK, 1 )
- CALL ZSYMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO,
- $ WORK( N+1 ), 1 )
- CALL ZLACGV( N-I+1, WORK, 1 )
- *
- * compute v := y - 1/2 * tau * ( u, y ) * u
- *
- ALPHA = -HALF*TAU*ZDOTC( N-I+1, WORK, 1, WORK( N+1 ), 1 )
- CALL ZAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 )
- *
- * apply the transformation as a rank-2 update to A(i:n,i:n)
- *
- * CALL ZSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
- * $ A( I, I ), LDA )
- *
- DO 50 JJ = I, N
- DO 40 II = JJ, N
- A( II, JJ ) = A( II, JJ ) -
- $ WORK( II-I+1 )*WORK( N+JJ-I+1 ) -
- $ WORK( N+II-I+1 )*WORK( JJ-I+1 )
- 40 CONTINUE
- 50 CONTINUE
- 60 CONTINUE
- *
- * Reduce number of subdiagonals to K
- *
- DO 100 I = 1, N - 1 - K
- *
- * generate reflection to annihilate A(k+i+1:n,i)
- *
- WN = DZNRM2( N-K-I+1, A( K+I, I ), 1 )
- WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = A( K+I, I ) + WA
- CALL ZSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 )
- A( K+I, I ) = ONE
- TAU = DBLE( WB / WA )
- END IF
- *
- * apply reflection to A(k+i:n,i+1:k+i-1) from the left
- *
- CALL ZGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE,
- $ A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 )
- CALL ZGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1,
- $ A( K+I, I+1 ), LDA )
- *
- * apply reflection to A(k+i:n,k+i:n) from the left and the right
- *
- * compute y := tau * A * conjg(u)
- *
- CALL ZLACGV( N-K-I+1, A( K+I, I ), 1 )
- CALL ZSYMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA,
- $ A( K+I, I ), 1, ZERO, WORK, 1 )
- CALL ZLACGV( N-K-I+1, A( K+I, I ), 1 )
- *
- * compute v := y - 1/2 * tau * ( u, y ) * u
- *
- ALPHA = -HALF*TAU*ZDOTC( N-K-I+1, A( K+I, I ), 1, WORK, 1 )
- CALL ZAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 )
- *
- * apply symmetric rank-2 update to A(k+i:n,k+i:n)
- *
- * CALL ZSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
- * $ A( K+I, K+I ), LDA )
- *
- DO 80 JJ = K + I, N
- DO 70 II = JJ, N
- A( II, JJ ) = A( II, JJ ) - A( II, I )*WORK( JJ-K-I+1 ) -
- $ WORK( II-K-I+1 )*A( JJ, I )
- 70 CONTINUE
- 80 CONTINUE
- *
- A( K+I, I ) = -WA
- DO 90 J = K + I + 1, N
- A( J, I ) = ZERO
- 90 CONTINUE
- 100 CONTINUE
- *
- * Store full symmetric matrix
- *
- DO 120 J = 1, N
- DO 110 I = J + 1, N
- A( J, I ) = A( I, J )
- 110 CONTINUE
- 120 CONTINUE
- RETURN
- *
- * End of ZLAGSY
- *
- END
|