|
- *> \brief \b SLAGGE
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, KL, KU, LDA, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( 4 )
- * REAL A( LDA, * ), D( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAGGE generates a real general m by n matrix A, by pre- and post-
- *> multiplying a real diagonal matrix D with random orthogonal matrices:
- *> A = U*D*V. The lower and upper bandwidths may then be reduced to
- *> kl and ku by additional orthogonal transformations.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of nonzero subdiagonals within the band of A.
- *> 0 <= KL <= M-1.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of nonzero superdiagonals within the band of A.
- *> 0 <= KU <= N-1.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (min(M,N))
- *> The diagonal elements of the diagonal matrix D.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The generated m by n matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= M.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry, the seed of the random number generator; the array
- *> elements must be between 0 and 4095, and ISEED(4) must be
- *> odd.
- *> On exit, the seed is updated.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (M+N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup real_matgen
- *
- * =====================================================================
- SUBROUTINE SLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, KL, KU, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( 4 )
- REAL A( LDA, * ), D( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- REAL TAU, WA, WB, WN
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMV, SGER, SLARNV, SSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SIGN
- * ..
- * .. External Functions ..
- REAL SNRM2
- EXTERNAL SNRM2
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
- INFO = -3
- ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -7
- END IF
- IF( INFO.LT.0 ) THEN
- CALL XERBLA( 'SLAGGE', -INFO )
- RETURN
- END IF
- *
- * initialize A to diagonal matrix
- *
- DO 20 J = 1, N
- DO 10 I = 1, M
- A( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- DO 30 I = 1, MIN( M, N )
- A( I, I ) = D( I )
- 30 CONTINUE
- *
- * Quick exit if the user wants a diagonal matrix
- *
- IF(( KL .EQ. 0 ).AND.( KU .EQ. 0)) RETURN
- *
- * pre- and post-multiply A by random orthogonal matrices
- *
- DO 40 I = MIN( M, N ), 1, -1
- IF( I.LT.M ) THEN
- *
- * generate random reflection
- *
- CALL SLARNV( 3, ISEED, M-I+1, WORK )
- WN = SNRM2( M-I+1, WORK, 1 )
- WA = SIGN( WN, WORK( 1 ) )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = WORK( 1 ) + WA
- CALL SSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
- WORK( 1 ) = ONE
- TAU = WB / WA
- END IF
- *
- * multiply A(i:m,i:n) by random reflection from the left
- *
- CALL SGEMV( 'Transpose', M-I+1, N-I+1, ONE, A( I, I ), LDA,
- $ WORK, 1, ZERO, WORK( M+1 ), 1 )
- CALL SGER( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
- $ A( I, I ), LDA )
- END IF
- IF( I.LT.N ) THEN
- *
- * generate random reflection
- *
- CALL SLARNV( 3, ISEED, N-I+1, WORK )
- WN = SNRM2( N-I+1, WORK, 1 )
- WA = SIGN( WN, WORK( 1 ) )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = WORK( 1 ) + WA
- CALL SSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
- WORK( 1 ) = ONE
- TAU = WB / WA
- END IF
- *
- * multiply A(i:m,i:n) by random reflection from the right
- *
- CALL SGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
- $ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
- CALL SGER( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
- $ A( I, I ), LDA )
- END IF
- 40 CONTINUE
- *
- * Reduce number of subdiagonals to KL and number of superdiagonals
- * to KU
- *
- DO 70 I = 1, MAX( M-1-KL, N-1-KU )
- IF( KL.LE.KU ) THEN
- *
- * annihilate subdiagonal elements first (necessary if KL = 0)
- *
- IF( I.LE.MIN( M-1-KL, N ) ) THEN
- *
- * generate reflection to annihilate A(kl+i+1:m,i)
- *
- WN = SNRM2( M-KL-I+1, A( KL+I, I ), 1 )
- WA = SIGN( WN, A( KL+I, I ) )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = A( KL+I, I ) + WA
- CALL SSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
- A( KL+I, I ) = ONE
- TAU = WB / WA
- END IF
- *
- * apply reflection to A(kl+i:m,i+1:n) from the left
- *
- CALL SGEMV( 'Transpose', M-KL-I+1, N-I, ONE,
- $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
- $ WORK, 1 )
- CALL SGER( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, 1,
- $ A( KL+I, I+1 ), LDA )
- A( KL+I, I ) = -WA
- END IF
- *
- IF( I.LE.MIN( N-1-KU, M ) ) THEN
- *
- * generate reflection to annihilate A(i,ku+i+1:n)
- *
- WN = SNRM2( N-KU-I+1, A( I, KU+I ), LDA )
- WA = SIGN( WN, A( I, KU+I ) )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = A( I, KU+I ) + WA
- CALL SSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
- A( I, KU+I ) = ONE
- TAU = WB / WA
- END IF
- *
- * apply reflection to A(i+1:m,ku+i:n) from the right
- *
- CALL SGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
- $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
- $ WORK, 1 )
- CALL SGER( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
- $ LDA, A( I+1, KU+I ), LDA )
- A( I, KU+I ) = -WA
- END IF
- ELSE
- *
- * annihilate superdiagonal elements first (necessary if
- * KU = 0)
- *
- IF( I.LE.MIN( N-1-KU, M ) ) THEN
- *
- * generate reflection to annihilate A(i,ku+i+1:n)
- *
- WN = SNRM2( N-KU-I+1, A( I, KU+I ), LDA )
- WA = SIGN( WN, A( I, KU+I ) )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = A( I, KU+I ) + WA
- CALL SSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
- A( I, KU+I ) = ONE
- TAU = WB / WA
- END IF
- *
- * apply reflection to A(i+1:m,ku+i:n) from the right
- *
- CALL SGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
- $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
- $ WORK, 1 )
- CALL SGER( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
- $ LDA, A( I+1, KU+I ), LDA )
- A( I, KU+I ) = -WA
- END IF
- *
- IF( I.LE.MIN( M-1-KL, N ) ) THEN
- *
- * generate reflection to annihilate A(kl+i+1:m,i)
- *
- WN = SNRM2( M-KL-I+1, A( KL+I, I ), 1 )
- WA = SIGN( WN, A( KL+I, I ) )
- IF( WN.EQ.ZERO ) THEN
- TAU = ZERO
- ELSE
- WB = A( KL+I, I ) + WA
- CALL SSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
- A( KL+I, I ) = ONE
- TAU = WB / WA
- END IF
- *
- * apply reflection to A(kl+i:m,i+1:n) from the left
- *
- CALL SGEMV( 'Transpose', M-KL-I+1, N-I, ONE,
- $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
- $ WORK, 1 )
- CALL SGER( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, 1,
- $ A( KL+I, I+1 ), LDA )
- A( KL+I, I ) = -WA
- END IF
- END IF
- *
- IF (I .LE. N) THEN
- DO 50 J = KL + I + 1, M
- A( J, I ) = ZERO
- 50 CONTINUE
- END IF
- *
- IF (I .LE. M) THEN
- DO 60 J = KU + I + 1, N
- A( I, J ) = ZERO
- 60 CONTINUE
- END IF
- 70 CONTINUE
- RETURN
- *
- * End of SLAGGE
- *
- END
|