|
- *> \brief \b ZSTT21
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, RWORK,
- * RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER KBAND, LDU, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
- * $ SD( * ), SE( * )
- * COMPLEX*16 U( LDU, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSTT21 checks a decomposition of the form
- *>
- *> A = U S U**H
- *>
- *> where **H means conjugate transpose, A is real symmetric tridiagonal,
- *> U is unitary, and S is real and diagonal (if KBAND=0) or symmetric
- *> tridiagonal (if KBAND=1). Two tests are performed:
- *>
- *> RESULT(1) = | A - U S U**H | / ( |A| n ulp )
- *>
- *> RESULT(2) = | I - U U**H | / ( n ulp )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The size of the matrix. If it is zero, ZSTT21 does nothing.
- *> It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KBAND
- *> \verbatim
- *> KBAND is INTEGER
- *> The bandwidth of the matrix S. It may only be zero or one.
- *> If zero, then S is diagonal, and SE is not referenced. If
- *> one, then S is symmetric tri-diagonal.
- *> \endverbatim
- *>
- *> \param[in] AD
- *> \verbatim
- *> AD is DOUBLE PRECISION array, dimension (N)
- *> The diagonal of the original (unfactored) matrix A. A is
- *> assumed to be real symmetric tridiagonal.
- *> \endverbatim
- *>
- *> \param[in] AE
- *> \verbatim
- *> AE is DOUBLE PRECISION array, dimension (N-1)
- *> The off-diagonal of the original (unfactored) matrix A. A
- *> is assumed to be symmetric tridiagonal. AE(1) is the (1,2)
- *> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
- *> \endverbatim
- *>
- *> \param[in] SD
- *> \verbatim
- *> SD is DOUBLE PRECISION array, dimension (N)
- *> The diagonal of the real (symmetric tri-) diagonal matrix S.
- *> \endverbatim
- *>
- *> \param[in] SE
- *> \verbatim
- *> SE is DOUBLE PRECISION array, dimension (N-1)
- *> The off-diagonal of the (symmetric tri-) diagonal matrix S.
- *> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the
- *> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
- *> element, etc.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is COMPLEX*16 array, dimension (LDU, N)
- *> The unitary matrix in the decomposition.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. LDU must be at least N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N**2)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (2)
- *> The values computed by the two tests described above. The
- *> values are currently limited to 1/ulp, to avoid overflow.
- *> RESULT(1) is always modified.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_eig
- *
- * =====================================================================
- SUBROUTINE ZSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, RWORK,
- $ RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER KBAND, LDU, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
- $ SD( * ), SE( * )
- COMPLEX*16 U( LDU, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER J
- DOUBLE PRECISION ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
- EXTERNAL DLAMCH, ZLANGE, ZLANHE
- * ..
- * .. External Subroutines ..
- EXTERNAL ZGEMM, ZHER, ZHER2, ZLASET
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * 1) Constants
- *
- RESULT( 1 ) = ZERO
- RESULT( 2 ) = ZERO
- IF( N.LE.0 )
- $ RETURN
- *
- UNFL = DLAMCH( 'Safe minimum' )
- ULP = DLAMCH( 'Precision' )
- *
- * Do Test 1
- *
- * Copy A & Compute its 1-Norm:
- *
- CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
- *
- ANORM = ZERO
- TEMP1 = ZERO
- *
- DO 10 J = 1, N - 1
- WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
- WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
- TEMP2 = ABS( AE( J ) )
- ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
- TEMP1 = TEMP2
- 10 CONTINUE
- *
- WORK( N**2 ) = AD( N )
- ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
- *
- * Norm of A - USU*
- *
- DO 20 J = 1, N
- CALL ZHER( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
- 20 CONTINUE
- *
- IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
- DO 30 J = 1, N - 1
- CALL ZHER2( 'L', N, -DCMPLX( SE( J ) ), U( 1, J ), 1,
- $ U( 1, J+1 ), 1, WORK, N )
- 30 CONTINUE
- END IF
- *
- WNORM = ZLANHE( '1', 'L', N, WORK, N, RWORK )
- *
- IF( ANORM.GT.WNORM ) THEN
- RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
- ELSE
- RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
- END IF
- END IF
- *
- * Do Test 2
- *
- * Compute U U**H - I
- *
- CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
- $ N )
- *
- DO 40 J = 1, N
- WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
- 40 CONTINUE
- *
- RESULT( 2 ) = MIN( DBLE( N ), ZLANGE( '1', N, N, WORK, N,
- $ RWORK ) ) / ( N*ULP )
- *
- RETURN
- *
- * End of ZSTT21
- *
- END
|