|
- *> \brief \b ZSBMV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
- * INCY )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INCX, INCY, K, LDA, N
- * COMPLEX*16 ALPHA, BETA
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), X( * ), Y( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZSBMV performs the matrix-vector operation
- *>
- *> y := alpha*A*x + beta*y,
- *>
- *> where alpha and beta are scalars, x and y are n element vectors and
- *> A is an n by n symmetric band matrix, with k super-diagonals.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \verbatim
- *> UPLO - CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the band matrix A is being supplied as
- *> follows:
- *>
- *> UPLO = 'U' or 'u' The upper triangular part of A is
- *> being supplied.
- *>
- *> UPLO = 'L' or 'l' The lower triangular part of A is
- *> being supplied.
- *>
- *> Unchanged on exit.
- *>
- *> N - INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> Unchanged on exit.
- *>
- *> K - INTEGER
- *> On entry, K specifies the number of super-diagonals of the
- *> matrix A. K must satisfy 0 .le. K.
- *> Unchanged on exit.
- *>
- *> ALPHA - COMPLEX*16
- *> On entry, ALPHA specifies the scalar alpha.
- *> Unchanged on exit.
- *>
- *> A - COMPLEX*16 array, dimension( LDA, N )
- *> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
- *> by n part of the array A must contain the upper triangular
- *> band part of the symmetric matrix, supplied column by
- *> column, with the leading diagonal of the matrix in row
- *> ( k + 1 ) of the array, the first super-diagonal starting at
- *> position 2 in row k, and so on. The top left k by k triangle
- *> of the array A is not referenced.
- *> The following program segment will transfer the upper
- *> triangular part of a symmetric band matrix from conventional
- *> full matrix storage to band storage:
- *>
- *> DO 20, J = 1, N
- *> M = K + 1 - J
- *> DO 10, I = MAX( 1, J - K ), J
- *> A( M + I, J ) = matrix( I, J )
- *> 10 CONTINUE
- *> 20 CONTINUE
- *>
- *> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
- *> by n part of the array A must contain the lower triangular
- *> band part of the symmetric matrix, supplied column by
- *> column, with the leading diagonal of the matrix in row 1 of
- *> the array, the first sub-diagonal starting at position 1 in
- *> row 2, and so on. The bottom right k by k triangle of the
- *> array A is not referenced.
- *> The following program segment will transfer the lower
- *> triangular part of a symmetric band matrix from conventional
- *> full matrix storage to band storage:
- *>
- *> DO 20, J = 1, N
- *> M = 1 - J
- *> DO 10, I = J, MIN( N, J + K )
- *> A( M + I, J ) = matrix( I, J )
- *> 10 CONTINUE
- *> 20 CONTINUE
- *>
- *> Unchanged on exit.
- *>
- *> LDA - INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> ( k + 1 ).
- *> Unchanged on exit.
- *>
- *> X - COMPLEX*16 array, dimension at least
- *> ( 1 + ( N - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the
- *> vector x.
- *> Unchanged on exit.
- *>
- *> INCX - INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> Unchanged on exit.
- *>
- *> BETA - COMPLEX*16
- *> On entry, BETA specifies the scalar beta.
- *> Unchanged on exit.
- *>
- *> Y - COMPLEX*16 array, dimension at least
- *> ( 1 + ( N - 1 )*abs( INCY ) ).
- *> Before entry, the incremented array Y must contain the
- *> vector y. On exit, Y is overwritten by the updated vector y.
- *>
- *> INCY - INTEGER
- *> On entry, INCY specifies the increment for the elements of
- *> Y. INCY must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex16_eig
- *
- * =====================================================================
- SUBROUTINE ZSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
- $ INCY )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INCX, INCY, K, LDA, N
- COMPLEX*16 ALPHA, BETA
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), X( * ), Y( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
- COMPLEX*16 TEMP1, TEMP2
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = 1
- ELSE IF( N.LT.0 ) THEN
- INFO = 2
- ELSE IF( K.LT.0 ) THEN
- INFO = 3
- ELSE IF( LDA.LT.( K+1 ) ) THEN
- INFO = 6
- ELSE IF( INCX.EQ.0 ) THEN
- INFO = 8
- ELSE IF( INCY.EQ.0 ) THEN
- INFO = 11
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZSBMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * Set up the start points in X and Y.
- *
- IF( INCX.GT.0 ) THEN
- KX = 1
- ELSE
- KX = 1 - ( N-1 )*INCX
- END IF
- IF( INCY.GT.0 ) THEN
- KY = 1
- ELSE
- KY = 1 - ( N-1 )*INCY
- END IF
- *
- * Start the operations. In this version the elements of the array A
- * are accessed sequentially with one pass through A.
- *
- * First form y := beta*y.
- *
- IF( BETA.NE.ONE ) THEN
- IF( INCY.EQ.1 ) THEN
- IF( BETA.EQ.ZERO ) THEN
- DO 10 I = 1, N
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1, N
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO ) THEN
- DO 30 I = 1, N
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1, N
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Form y when upper triangle of A is stored.
- *
- KPLUS1 = K + 1
- IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
- DO 60 J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- L = KPLUS1 - J
- DO 50 I = MAX( 1, J-K ), J - 1
- Y( I ) = Y( I ) + TEMP1*A( L+I, J )
- TEMP2 = TEMP2 + A( L+I, J )*X( I )
- 50 CONTINUE
- Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- L = KPLUS1 - J
- DO 70 I = MAX( 1, J-K ), J - 1
- Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
- TEMP2 = TEMP2 + A( L+I, J )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- IF( J.GT.K ) THEN
- KX = KX + INCX
- KY = KY + INCY
- END IF
- 80 CONTINUE
- END IF
- ELSE
- *
- * Form y when lower triangle of A is stored.
- *
- IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
- DO 100 J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*A( 1, J )
- L = 1 - J
- DO 90 I = J + 1, MIN( N, J+K )
- Y( I ) = Y( I ) + TEMP1*A( L+I, J )
- TEMP2 = TEMP2 + A( L+I, J )*X( I )
- 90 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
- L = 1 - J
- IX = JX
- IY = JY
- DO 110 I = J + 1, MIN( N, J+K )
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
- TEMP2 = TEMP2 + A( L+I, J )*X( IX )
- 110 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZSBMV
- *
- END
|